Evidence That Calcium Release-activated Current Mediates the Biphasic Electrical Activity of Mouse Pancreatic β-Cells

Evidence That Calcium Release-activated Current Mediates the Biphasic Electrical Activity of... The electrical response of pancreatic β-cells to step increases in glucose concentration is biphasic, consisting of a prolonged depolarization with action potentials (Phase 1) followed by membrane potential oscillations known as bursts. We have proposed that the Phase 1 response results from the combined depolarizing influences of potassium channel closure and an inward, nonselective cation current (I CRAN) that activates as intracellular calcium stores empty during exposure to basal glucose (Bertram et al., 1995). The stores refill during Phase 1, deactivating I CRAN and allowing steady-state bursting to commence. We support this hypothesis with additional simulations and experimental results indicating that Phase 1 duration is sensitive to the filling state of intracellular calcium stores. First, the duration of the Phase 1 transient increases with duration of prior exposure to basal (2.8 mm) glucose, reflecting the increased time required to fill calcium stores that have been emptying for longer periods. Second, Phase 1 duration is reduced when islets are exposed to elevated K+ to refill calcium stores in the presence of basal glucose. Third, when extracellular calcium is removed during the basal glucose exposure to reduce calcium influx into the stores, Phase 1 duration increases. Finally, no Phase 1 is observed following hyperpolarization of the β-cell membrane with diazoxide in the continued presence of 11 mm glucose, a condition in which intracellular calcium stores remain full. Application of carbachol to empty calcium stores during basal glucose exposure did not increase Phase 1 duration as the model predicts. Despite this discrepancy, the good agreement between most of the experimental results and the model predictions provides evidence that a calcium release-activated current mediates the Phase 1 electrical response of the pancreatic β-cell. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Evidence That Calcium Release-activated Current Mediates the Biphasic Electrical Activity of Mouse Pancreatic β-Cells

Loading next page...
 
/lp/springer_journal/evidence-that-calcium-release-activated-current-mediates-the-biphasic-0RgMiRggWu
Publisher
Springer Journals
Copyright
Copyright © Inc. by 1997 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900157
Publisher site
See Article on Publisher Site

Abstract

The electrical response of pancreatic β-cells to step increases in glucose concentration is biphasic, consisting of a prolonged depolarization with action potentials (Phase 1) followed by membrane potential oscillations known as bursts. We have proposed that the Phase 1 response results from the combined depolarizing influences of potassium channel closure and an inward, nonselective cation current (I CRAN) that activates as intracellular calcium stores empty during exposure to basal glucose (Bertram et al., 1995). The stores refill during Phase 1, deactivating I CRAN and allowing steady-state bursting to commence. We support this hypothesis with additional simulations and experimental results indicating that Phase 1 duration is sensitive to the filling state of intracellular calcium stores. First, the duration of the Phase 1 transient increases with duration of prior exposure to basal (2.8 mm) glucose, reflecting the increased time required to fill calcium stores that have been emptying for longer periods. Second, Phase 1 duration is reduced when islets are exposed to elevated K+ to refill calcium stores in the presence of basal glucose. Third, when extracellular calcium is removed during the basal glucose exposure to reduce calcium influx into the stores, Phase 1 duration increases. Finally, no Phase 1 is observed following hyperpolarization of the β-cell membrane with diazoxide in the continued presence of 11 mm glucose, a condition in which intracellular calcium stores remain full. Application of carbachol to empty calcium stores during basal glucose exposure did not increase Phase 1 duration as the model predicts. Despite this discrepancy, the good agreement between most of the experimental results and the model predictions provides evidence that a calcium release-activated current mediates the Phase 1 electrical response of the pancreatic β-cell.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jan 1, 1997

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off