Evidence implying only unprimed RdRP activity during transitive gene silencing in plants

Evidence implying only unprimed RdRP activity during transitive gene silencing in plants RNA silencing is a sequence-specific RNA degradation mechanism found in most eukaryotes, where small cleavage products (siRNAs) of double stranded RNA (dsRNA) mediate silencing of genes with sequence identity to the dsRNA inducer. In several systems, silencing has been found to spread from the dsRNA inducer sequence into upstream or downstream regions of the target RNA, a phenomenon termed transitive silencing. In nematodes, silencing spreads only in the 3′–5′ direction along the target mRNA by siRNAs serving as primers for cRNA synthesis by RNA-dependent RNA polymerase. In plants, transitive silencing is seen in both directions suggesting that at least some cRNA synthesis occurs by un-primed initiation at the 3′ end of mRNAs. Replicating plant viruses trigger an RNA silencing defence response that degrades the viral RNA, thus tempering the virus infection. Likewise, fragments of plant genes inserted into a virus will become targets for degradation, leading to virus-induced gene silencing (VIGS) of the homologous plant mRNAs. We have analyzed the spreading of gene silencing in VIGS experiments using a transgene and two endogenous genes as targets. In Nicotiana benthamiana plants expressing a β-glucuronidase (GUS) transgene, a Potato virus X vector carrying a 5′ fragment of the GUS gene induced silencing which spread to downstream regions of the transgene mRNA including the 3′-untranslated region. Conversely, silencing induced by a 3′ fragment spread only for a limited distance in the 3′–5′ direction. Silencing induced by a central GUS gene fragment spread only into downstream regions. Similar analyses using the endogenous plant genes, magnesium chelatase subunit I (ChlI) and an RNase L inhibitor homologue (RLIh), revealed no spreading along target sequences. This implies that transitive silencing in plants occurs by un-primed cRNA synthesis from the 3′ end of targeted (transgene) transcripts, and not by siRNA-primed cRNA synthesis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Evidence implying only unprimed RdRP activity during transitive gene silencing in plants

Loading next page...
Kluwer Academic Publishers
Copyright © 2005 by Springer
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial