Evidence for phosphorylation of the major seed storage protein of the common bean and its phosphorylation-dependent degradation during germination

Evidence for phosphorylation of the major seed storage protein of the common bean and its... Phaseolin is the major seed storage protein of common bean, Phaseolus vulgaris L., accounting for up to 50 % of the total seed proteome. The regulatory mechanisms responsible for the synthesis, accumulation and degradation of phaseolin in the common bean seed are not yet sufficiently known. Here, we report on a systematic study in dormant and 4-day germinating bean seeds from cultivars Sanilac (S) and Tendergreen (T) to explore the presence and dynamics of phosphorylated phaseolin isoforms. High-resolution two-dimensional electrophoresis in combination with the phosphoprotein-specific Pro-Q Diamond phosphoprotein fluorescent stain and chemical dephosphorylation by hydrogen fluoride–pyridine enabled us to identify differentially phosphorylated phaseolin polypeptides in dormant and germinating seeds from cultivars S and T. Phosphorylated forms of the two subunits of type α and β that compose the phaseolin were identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) and MALDI-TOF/TOF tandem MS. In addition, we found that the levels of phosphorylation of the phaseolin changed remarkably in the seed transition from dormancy to early germination stage. Temporal changes in the extent of phosphorylation in response to physiological and metabolic variations suggest that phosphorylated phaseolin isoforms have functional significance. In particular, this prospective study supports the hypothesis that mobilization of the phaseolin in germinating seeds occurs through the degradation of highly phosphorylated isoforms. Taken together, our results indicate that post-translational phaseolin modifications through phosphorylations need to be taken into consideration for a better understanding of the molecular mechanisms underlying its regulation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Evidence for phosphorylation of the major seed storage protein of the common bean and its phosphorylation-dependent degradation during germination

Loading next page...
Springer Netherlands
Copyright © 2013 by Springer Science+Business Media Dordrecht
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
Publisher site
See Article on Publisher Site


  • Contrasting globulin and cysteine proteinase gene expression patterns reveal fundamental developmental differences between zygotic and somatic embryos of oil palm
    Aberlenc-Bertossi, F; Chabrillange, N; Duval, Y; Tregear, J
  • In vivo and in vitro processing of seed reserve protein in the endoplasmic reticulum: evidence for two glycosylation steps
    Bollini, R; Vitale, A; Chrispeels, MJ
  • 2-DE-based proteomic analysis of common bean (Phaseolus vulgaris L.) seeds
    Fuente, M; Borrajo, A; Bermúdez, J; Lores, M; Alonso, J; López, M; Santalla, M; Ron, A; Zapata, C; Alvarez, G

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial