Evidence for interaction between Hsp90 and the ER membrane complex

Evidence for interaction between Hsp90 and the ER membrane complex Numerous putative heat shock protein 90 (Hsp90)-interacting proteins, which could represent novel folding clients or co-chaperones, have been identified in recent years. Two separate high-throughput screens in yeast uncovered genetic effects between Hsp90 and components of the ER membrane complex (EMC), which is required for tolerance to unfolded protein response stress in yeast. Herein, we provide the first experimental evidence supporting that there is a genuine interaction of Hsp90 with the EMC. We demonstrate genetic interactions between EMC2 and the known Hsp90 co-chaperone encoded by STI1, as well as Hsp90 point mutant allele-specific differences in inherent growth and Hsp90 inhibitor tolerance in the absence and presence of EMC2. In co-precipitation experiments, Hsp90 interacts with Emc2p, whether or not Emc2p contains amino acid sequences designated as a tetratricopeptide repeat motif. Yeast with multiple EMC gene deletions exhibit increased sensitivity to Hsp90 inhibitor as well as defective folding of the well-established Hsp90 folding client, the glucocorticoid receptor. Altogether, our evidence of physical, genetic, and functional interaction of Hsp90 with the EMC, as well as bioinformatic analysis of shared interactors, supports that there is a legitimate interaction between them in vivo. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cell Stress and Chaperones Springer Journals

Evidence for interaction between Hsp90 and the ER membrane complex

Loading next page...
 
/lp/springer_journal/evidence-for-interaction-between-hsp90-and-the-er-membrane-complex-JuhBN3PTey
Publisher
Springer Journals
Copyright
Copyright © 2018 by Cell Stress Society International
Subject
Biomedicine; Biomedicine, general; Cell Biology; Biochemistry, general; Immunology; Cancer Research; Neurosciences
ISSN
1355-8145
eISSN
1466-1268
D.O.I.
10.1007/s12192-018-0908-z
Publisher site
See Article on Publisher Site

Abstract

Numerous putative heat shock protein 90 (Hsp90)-interacting proteins, which could represent novel folding clients or co-chaperones, have been identified in recent years. Two separate high-throughput screens in yeast uncovered genetic effects between Hsp90 and components of the ER membrane complex (EMC), which is required for tolerance to unfolded protein response stress in yeast. Herein, we provide the first experimental evidence supporting that there is a genuine interaction of Hsp90 with the EMC. We demonstrate genetic interactions between EMC2 and the known Hsp90 co-chaperone encoded by STI1, as well as Hsp90 point mutant allele-specific differences in inherent growth and Hsp90 inhibitor tolerance in the absence and presence of EMC2. In co-precipitation experiments, Hsp90 interacts with Emc2p, whether or not Emc2p contains amino acid sequences designated as a tetratricopeptide repeat motif. Yeast with multiple EMC gene deletions exhibit increased sensitivity to Hsp90 inhibitor as well as defective folding of the well-established Hsp90 folding client, the glucocorticoid receptor. Altogether, our evidence of physical, genetic, and functional interaction of Hsp90 with the EMC, as well as bioinformatic analysis of shared interactors, supports that there is a legitimate interaction between them in vivo.

Journal

Cell Stress and ChaperonesSpringer Journals

Published: May 28, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off