Event correlation for process discovery from web service interaction logs

Event correlation for process discovery from web service interaction logs Understanding, analyzing, and ultimately improving business processes is a goal of enterprises today. These tasks are challenging as business processes in modern enterprises are implemented over several applications and Web services, and the information about process execution is scattered across several data sources. Understanding modern business processes entails identifying the correlation between events in data sources in the context of business processes (event correlation is the process of finding relationships between events that belong to the same process execution instance). In this paper, we investigate the problem of event correlation for business processes that are realized through the interactions of a set of Web services. We identify various ways in which process-related events could be correlated as well as investigate the problem of discovering event correlation (semi-) automatically from service interaction logs. We introduce the concept of process view to represent the process resulting from a certain way of event correlation and that of process space referring to the set of possible process views over process events. Event correlation is a challenging problem as there are various ways in which process events could be correlated, and in many cases, it is subjective. Exploring all the possibilities of correlations is computationally expensive, and only some of the correlated event sets result in process views that are interesting. We propose efficient algorithms and heuristics to identify correlated event sets that lead potentially to interesting process views. To account for its subjectivity, we have designed the event correlation discovery process to be interactive and enable users to guide it toward process views of their interest and organize the discovered process views into a process map that allows users to effectively navigate through the process space and identify the ones of interest. We report on experiments performed on both synthetic and real-world datasets that show the viability and efficiency of the approach. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Event correlation for process discovery from web service interaction logs

Loading next page...
 
/lp/springer_journal/event-correlation-for-process-discovery-from-web-service-interaction-sLiQSx1t0b
Publisher
Springer-Verlag
Copyright
Copyright © 2011 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-010-0203-9
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial