Evaluation of two crop canopy sensors for nitrogen variability determination in irrigated maize

Evaluation of two crop canopy sensors for nitrogen variability determination in irrigated maize Advances in precision agriculture technology have led to the development of ground-based active remote sensors that can determine normalized difference vegetation index (NDVI). Studies have shown that NDVI is highly related to leaf nitrogen (N) content in maize (Zea mays L.). Remotely sensed NDVI can provide valuable information regarding in-field N variability and significant relationships between sensor NDVI and maize grain yield have been reported. While numerous studies have been conducted using active sensors, none have focused on the comparative effectiveness of these sensors in maize under semi-arid irrigated field conditions. Therefore, the objectives of this study were (1) to determine the performance of two active remote sensors by determining each sensor’s NDVI relationship with maize N status and grain yield as driven by different N rates in a semi-arid irrigated environment and, (2) to determine if inclusion of ancillary soil or plant data (soil NO3 concentration, leaf N concentration, SPAD chlorophyll and plant height) would affect these relationships. Results indicated that NDVI readings from both sensors had high r 2 values with applied N rate and grain yield at the V12 and V14 maize growth stages. However, no single or multiple regression using soil or plant variables substantially increased the r 2 over using NDVI alone. Overall, both sensors performed well in the determination of N variability in irrigated maize at the V12 and V14 growth stages and either sensor could be an important tool to aid precision N management. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Evaluation of two crop canopy sensors for nitrogen variability determination in irrigated maize

Loading next page...
 
/lp/springer_journal/evaluation-of-two-crop-canopy-sensors-for-nitrogen-variability-lQkzT2DyEc
Publisher
Springer US
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-011-9229-2
Publisher site
See Article on Publisher Site

References

  • In-field assessment of single leaf nitrogen status by spectral reflectance measurements
    Alchanatis, VZ; Schmilovitch, Z; Meron, M

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial