Evaluation of triangular mesh layout techniques using large mesh simplification

Evaluation of triangular mesh layout techniques using large mesh simplification Highly detailed polygonal meshes nowadays were created vastly from a great number of multimedia applications. Insufficient main memory space and inferior locality-of-reference nature of the input mesh sequence incurred frequent page swaps and extremely low runtime efficiency. To address this issue, techniques based on the models of graph layout, matrix bandwidth minimization, and space-filling-curves were reported. However, such models merely considered the optimization of vertex layout on the basis of the graph distance or matrix bandwidths while leave the optimization of face layout either unoptimized or resorted an additional sorting procedure. In this paper, we propose an improved theoretic model suggesting the optimization of index-faced triangular mesh layout on the basis of a jointly consideration on both the vertex and face layout. Unlike previous attempts, we do not need additional efforts in optimizing one layout after the other by sorting, the optimized layouts are generated on the fly with each other with respect to both the vertex or triangle bandwidths. According to the experimental results, our approach outperforms the CM and SFC methods not only at yielding better theoretical results but also at improving the runtime efficiency of large mesh simplification. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Multimedia Tools and Applications Springer Journals

Evaluation of triangular mesh layout techniques using large mesh simplification

Loading next page...
 
/lp/springer_journal/evaluation-of-triangular-mesh-layout-techniques-using-large-mesh-NQ2f4FIEpZ
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Computer Science; Multimedia Information Systems; Computer Communication Networks; Data Structures, Cryptology and Information Theory; Special Purpose and Application-Based Systems
ISSN
1380-7501
eISSN
1573-7721
D.O.I.
10.1007/s11042-017-4607-z
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial