Evaluation of the performance of high-speed PIV compared to standard PIV in a turbulent jet

Evaluation of the performance of high-speed PIV compared to standard PIV in a turbulent jet In this paper, a comparison between two particle image velocimetry (PIV) systems, one based on a standard cross-correlation charge coupled device (CCD) camera with pulsed laser and another using high-speed complementary metal oxide semiconductor (CMOS) camera with continuous laser is performed. The objective of the paper is to point out advantages and disadvantages of the two systems when computing large and small flow scale statistics. The comparison is performed on velocity measurements in the near and far fields of a circular water jet: on this flow several experimental data and empirical self-similarity laws are available for comparisons. The results show that both systems are suitable for measurements with a preference for the standard one when investigating small-scale statistics. This result depends on the lower number of effectively independent samples acquired by a high-speed system and on the higher noise levels of CMOS sensors in comparison to CCDs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Evaluation of the performance of high-speed PIV compared to standard PIV in a turbulent jet

Loading next page...
 
/lp/springer_journal/evaluation-of-the-performance-of-high-speed-piv-compared-to-standard-cevdZtf1Wn
Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-009-0682-x
Publisher site
See Article on Publisher Site

Abstract

In this paper, a comparison between two particle image velocimetry (PIV) systems, one based on a standard cross-correlation charge coupled device (CCD) camera with pulsed laser and another using high-speed complementary metal oxide semiconductor (CMOS) camera with continuous laser is performed. The objective of the paper is to point out advantages and disadvantages of the two systems when computing large and small flow scale statistics. The comparison is performed on velocity measurements in the near and far fields of a circular water jet: on this flow several experimental data and empirical self-similarity laws are available for comparisons. The results show that both systems are suitable for measurements with a preference for the standard one when investigating small-scale statistics. This result depends on the lower number of effectively independent samples acquired by a high-speed system and on the higher noise levels of CMOS sensors in comparison to CCDs.

Journal

Experiments in FluidsSpringer Journals

Published: May 24, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off