Evaluation of red and red-edge reflectance-based vegetation indices for rice biomass and grain yield prediction models in paddy fields

Evaluation of red and red-edge reflectance-based vegetation indices for rice biomass and grain... Remote sensing-based nitrogen (N) management has been evaluated in many crops. The water background and wide range of varieties in rice (Oryza sativa), are unique features that require additional consideration when using sensor technology. The commonly calculated normalized difference vegetation index is of limited use when the crop has reached complete canopy closure. The objective of this research was to evaluate mid-season agronomic parameter and grain yield prediction models along with the effect of water background and of different varieties using a red- and red-edge-based vegetation index. Varieties × N trials were established at the LSU AgCenter Rice Research Station located in Crowley, Louisiana in 2011 and 2012. Canopy spectral reflectance under clear and turbid water, biomass yield, N content, plant coverage, and water depth were collected each week for three consecutive weeks beginning 2 weeks before panicle differentiation. Grain yield was also determined. Water turbidity had an influence on spectral reflectance when canopy coverage was less than 50 %. While water depth influenced red reflectance, this was not carried over when reflectance was transformed to vegetation indices. The red-edge-based vegetation indices, especially those computed by ratio, had stronger relationships with measured agronomic parameters as compared with red-based indices. Furthermore, the effect of variety on the yield prediction model was observed using derivative-based red-edge indices but not with other ratio-based indices. Future researches should focus on developing a generalized yield prediction model using ratio-based red-edge indices across different varieties to extend its applicability in production fields. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Evaluation of red and red-edge reflectance-based vegetation indices for rice biomass and grain yield prediction models in paddy fields

Loading next page...
Springer US
Copyright © 2016 by Springer Science+Business Media New York
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial