Evaluation of random forest classifier in security domain

Evaluation of random forest classifier in security domain There is an intrinsic adversarial nature in the security domain such as spam filtering and malware detection systems that attempt to mislead the detection system. This adversarial nature makes security applications different from the classical machine learning problems; for instance, an adversary (attacker) might change the distribution of test data and violate the data stationarity, a common assumption in machine learning techniques. Since machine learning methods are not inherently adversary-aware, a classifier designer should investigate the robustness of a learning system under attack. In this respect, recent studies have modeled the identified attacks against machine learning-based detection systems. Based on this, a classifier designer can evaluate the performance of a learning system leveraging the modeled attacks. Prior research explored a gradient-based approach in order to devise an attack against a classifier with differentiable discriminant function like SVM. However, there are several powerful classifiers with non-differentiable decision boundary such as Random Forest, which are commonly used in different security domain and applications. In this paper, we present a novel approach to model an attack against classifiers with non-differentiable decision boundary. In the experimentation, we first present an example that visually shows the effect of a successful attack on the MNIST handwritten digits classification task. Then we conduct experiments for two well-known applications in the security domain: spam filtering and malware detection in PDF files. The experimental results demonstrate that the proposed attack successfully evades Random Forest classifier and effectively degrades the classifier’s performance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Intelligence Springer Journals

Evaluation of random forest classifier in security domain

Loading next page...
Springer US
Copyright © 2017 by Springer Science+Business Media New York
Computer Science; Artificial Intelligence (incl. Robotics); Mechanical Engineering; Manufacturing, Machines, Tools
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial