Evaluation of phosphate removal capacity of Fe3O4–ZVINPs from aqueous solution: optimization using response surface analysis

Evaluation of phosphate removal capacity of Fe3O4–ZVINPs from aqueous solution: optimization... The present research aims to optimize the removal of phosphate (PO4 3−) from aqueous solution by Fe3O4 stabilized zero-valent iron nanoparticles (Fe3O4–ZVINPs). A three-factor, three-level, Box–Behnken design combined with response surface methodology was applied to design the experiments, to develop a mathematical model, and for evaluating the individual and also the interactive effects of the operating variables like pH, temperature, and PO4 3− concentration on removal efficiency. The analysis of variance has been used to evaluate the adequacy of the developed mathematical model in order to predict the optimal conditions of independent process variables, and to get maximum removal efficiency. Three-dimensional response surface plots were constructed to visualize the simultaneous interactive effects between two process variables. All three factors had a significant impact on removal of PO4 3−. The predicted value of the model (166.0 mg g−1PO4 3−) was in good agreement with the experimental value (164.92 mg g−1 PO4 3−) under the optimum conditions of temperature 49.2 °C; pH 3.5; and PO4 3− concentration 79.8 mg L−1. The removal of PO4 3− in the presence of environmental matrix (other ions) was also investigated at optimum conditions as predicted by the model. The results suggest that the presence of these ions had no significant effect on PO4 3− removal. In addition, the adsorbed PO4 3− can be effectively desorbed at higher pH of the solution. The findings suggest that removal of PO4 3− from aqueous solution using Fe3O4–ZVINPs can be an effective method. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Evaluation of phosphate removal capacity of Fe3O4–ZVINPs from aqueous solution: optimization using response surface analysis

Loading next page...
 
/lp/springer_journal/evaluation-of-phosphate-removal-capacity-of-fe3o4-zvinps-from-aqueous-DhXEL5xwui
Publisher
Springer Journals
Copyright
Copyright © 2016 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-016-2543-6
Publisher site
See Article on Publisher Site

Abstract

The present research aims to optimize the removal of phosphate (PO4 3−) from aqueous solution by Fe3O4 stabilized zero-valent iron nanoparticles (Fe3O4–ZVINPs). A three-factor, three-level, Box–Behnken design combined with response surface methodology was applied to design the experiments, to develop a mathematical model, and for evaluating the individual and also the interactive effects of the operating variables like pH, temperature, and PO4 3− concentration on removal efficiency. The analysis of variance has been used to evaluate the adequacy of the developed mathematical model in order to predict the optimal conditions of independent process variables, and to get maximum removal efficiency. Three-dimensional response surface plots were constructed to visualize the simultaneous interactive effects between two process variables. All three factors had a significant impact on removal of PO4 3−. The predicted value of the model (166.0 mg g−1PO4 3−) was in good agreement with the experimental value (164.92 mg g−1 PO4 3−) under the optimum conditions of temperature 49.2 °C; pH 3.5; and PO4 3− concentration 79.8 mg L−1. The removal of PO4 3− in the presence of environmental matrix (other ions) was also investigated at optimum conditions as predicted by the model. The results suggest that the presence of these ions had no significant effect on PO4 3− removal. In addition, the adsorbed PO4 3− can be effectively desorbed at higher pH of the solution. The findings suggest that removal of PO4 3− from aqueous solution using Fe3O4–ZVINPs can be an effective method.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Apr 23, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off