Evaluation of optimal parameters of MR fluids for damper application using particle swarm and response surface optimisation

Evaluation of optimal parameters of MR fluids for damper application using particle swarm and... The controllable rheological properties of MR fluid exhibit viscoelastic properties within pre-yield, which are essential for the characterization of MR dampers for the isolation of vibration. In the present work, using particle swarm optimisation (PSO), it is identified that the proportion of MR fluid constituents, fluid gap and current are the parameters which influence majorly on the rheological properties and damping effect of MR damper. Initially, rheological properties of the prepared MR fluid samples are determined using rotational plate–plate type rheometer with the magnetorheological device cell attachment by keeping three levels of gap between the parallel plates. Three different proportions of MR fluid are prepared based on the volume fraction of carbonyl iron particle, i.e., 25, 30 and 35% in the silicone carrier fluid along with 1% of lithium-based grease as stabiliser. The objective function of this optimisation problem is to maximise the shear stress and damping force of the MR damper. The design of experiment (DOE) is employed to obtain the various combinations of parameters and their respective responses. The interaction of the regression model obtained from the DOE is used in PSO to evaluate the optimal parameters. The results indicated that the MR fluid with the particle concentration of 31% is the optimal proportion for MR damper application. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Brazilian Society of Mechanical Sciences and Engineering Springer Journals

Evaluation of optimal parameters of MR fluids for damper application using particle swarm and response surface optimisation

Loading next page...
 
/lp/springer_journal/evaluation-of-optimal-parameters-of-mr-fluids-for-damper-application-kZjY86dLVk
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by The Brazilian Society of Mechanical Sciences and Engineering
Subject
Engineering; Mechanical Engineering
ISSN
1678-5878
eISSN
1806-3691
D.O.I.
10.1007/s40430-017-0875-9
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial