Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Evaluation of optimal parameters of MR fluids for damper application using particle swarm and response surface optimisation

Evaluation of optimal parameters of MR fluids for damper application using particle swarm and... The controllable rheological properties of MR fluid exhibit viscoelastic properties within pre-yield, which are essential for the characterization of MR dampers for the isolation of vibration. In the present work, using particle swarm optimisation (PSO), it is identified that the proportion of MR fluid constituents, fluid gap and current are the parameters which influence majorly on the rheological properties and damping effect of MR damper. Initially, rheological properties of the prepared MR fluid samples are determined using rotational plate–plate type rheometer with the magnetorheological device cell attachment by keeping three levels of gap between the parallel plates. Three different proportions of MR fluid are prepared based on the volume fraction of carbonyl iron particle, i.e., 25, 30 and 35% in the silicone carrier fluid along with 1% of lithium-based grease as stabiliser. The objective function of this optimisation problem is to maximise the shear stress and damping force of the MR damper. The design of experiment (DOE) is employed to obtain the various combinations of parameters and their respective responses. The interaction of the regression model obtained from the DOE is used in PSO to evaluate the optimal parameters. The results indicated that the MR fluid with the particle concentration of 31% is the optimal proportion for MR damper application. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Brazilian Society of Mechanical Sciences and Engineering Springer Journals

Evaluation of optimal parameters of MR fluids for damper application using particle swarm and response surface optimisation

Loading next page...
 
/lp/springer_journal/evaluation-of-optimal-parameters-of-mr-fluids-for-damper-application-kZjY86dLVk

References (33)

Publisher
Springer Journals
Copyright
Copyright © 2017 by The Brazilian Society of Mechanical Sciences and Engineering
Subject
Engineering; Mechanical Engineering
ISSN
1678-5878
eISSN
1806-3691
DOI
10.1007/s40430-017-0875-9
Publisher site
See Article on Publisher Site

Abstract

The controllable rheological properties of MR fluid exhibit viscoelastic properties within pre-yield, which are essential for the characterization of MR dampers for the isolation of vibration. In the present work, using particle swarm optimisation (PSO), it is identified that the proportion of MR fluid constituents, fluid gap and current are the parameters which influence majorly on the rheological properties and damping effect of MR damper. Initially, rheological properties of the prepared MR fluid samples are determined using rotational plate–plate type rheometer with the magnetorheological device cell attachment by keeping three levels of gap between the parallel plates. Three different proportions of MR fluid are prepared based on the volume fraction of carbonyl iron particle, i.e., 25, 30 and 35% in the silicone carrier fluid along with 1% of lithium-based grease as stabiliser. The objective function of this optimisation problem is to maximise the shear stress and damping force of the MR damper. The design of experiment (DOE) is employed to obtain the various combinations of parameters and their respective responses. The interaction of the regression model obtained from the DOE is used in PSO to evaluate the optimal parameters. The results indicated that the MR fluid with the particle concentration of 31% is the optimal proportion for MR damper application.

Journal

Journal of the Brazilian Society of Mechanical Sciences and EngineeringSpringer Journals

Published: Aug 1, 2017

There are no references for this article.