Evaluation of mid-season sensor based nitrogen fertilizer recommendations for winter wheat using different estimates of yield potential

Evaluation of mid-season sensor based nitrogen fertilizer recommendations for winter wheat using... Optical sensors, coupled with mathematical algorithms, have proven effective at determining more accurate mid-season nitrogen (N) fertilizer recommendations in winter wheat. One parameter required in making these recommendations is in-season grain yield potential at the time of sensing. Four algorithms, with different methods for determining grain yield potential, were evaluated for effectiveness to predict final grain yield and the agronomic optimum N rate (AONR) at 34 site-years. The current N fertilizer optimization algorithm (CNFOA) outperformed the other three algorithms at predicting yield potential with no added N and yield potential with added N (R2 = 0.46 and 0.25, respectively). However, no differences were observed in the amount of variability accounted for among all four algorithms in regards to predicting the AONR. Differences were observed in that the CNFOA and proposed N fertilizer optimization algorithm (PNFOA), under predicted the AONR at approximately 75 % of the site-years; whereas, the generalized algorithm (GA) and modified generalized algorithm (MGA) recommended N rates under the AONR at about 50 % of the site-years. The PNFOA was able to determine N rate recommendations within 20 kg N ha−1 of the AONR for half of the site-years; whereas, the other three algorithms were only able recommend within 20 kg N ha−1 of the AONR for about 40 % of the site-years. Lastly, all four algorithms reported more accurate N rate recommendations compared to non-sensor based methodologies and can more precisely account for the year to year variability in grain yields due to environment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Evaluation of mid-season sensor based nitrogen fertilizer recommendations for winter wheat using different estimates of yield potential

Loading next page...
Springer US
Copyright © 2016 by Springer Science+Business Media New York
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial