Evaluation of electron-hole recombination properties of titanium (IV) oxide particles with high photocatalytic activity

Evaluation of electron-hole recombination properties of titanium (IV) oxide particles with high... Electron-hole recombination in nano-sized titanium(IV) oxide (TiO2) particles with various physical properties, which have been shown to be highly active photocatalysts, was evaluated by quantitative analysis of reduced titanium species (Ti3+), which might be formed at crystalline defective sites in TiO2 particles through photo-irradiation in the presence of a hole scavenger under deaerated conditions. These highly active photocatalyst samples were synthesized by hydrothermal crystallization in organic media (HyCOM method) and post-calcination. The Ti3+ density decreased with increasing calcination temperature (T c), and a linear correlation was observed between the Ti3+ density and rate constant for electron-hole recombination evaluated by femtosecond pump-probe diffuse reflection spectroscopy. Reaction rate (R Ag) and the amount of silver ions (Ag+) adsorbed on TiO2 particles ([Ag+]ads) were measured for photocatalytic silver metal deposition along with oxygen formation from an aqueous Ag+ solution under deaerated conditions, and the slope of the R Ag versus [Ag+]ads plot was determined. Kinetic investigation of this reaction showed that the reciprocal of the slope was approximately related to the ratio of the rates for electron-hole recombination and electron trapping (k r/k e ratio). The k r/k e ratio decreased as T c increased, and the logarithm of the k r/k e ratio was linearly related with Ti3+ density. These two parameters were used as a measure for the recombination properties of TiO2 photocatalysts with various physical properties. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Evaluation of electron-hole recombination properties of titanium (IV) oxide particles with high photocatalytic activity

Loading next page...
 
/lp/springer_journal/evaluation-of-electron-hole-recombination-properties-of-titanium-iv-jIo3Qusbwn
Publisher
Springer Journals
Copyright
Copyright © 2007 by Springer
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856707779238612
Publisher site
See Article on Publisher Site

Abstract

Electron-hole recombination in nano-sized titanium(IV) oxide (TiO2) particles with various physical properties, which have been shown to be highly active photocatalysts, was evaluated by quantitative analysis of reduced titanium species (Ti3+), which might be formed at crystalline defective sites in TiO2 particles through photo-irradiation in the presence of a hole scavenger under deaerated conditions. These highly active photocatalyst samples were synthesized by hydrothermal crystallization in organic media (HyCOM method) and post-calcination. The Ti3+ density decreased with increasing calcination temperature (T c), and a linear correlation was observed between the Ti3+ density and rate constant for electron-hole recombination evaluated by femtosecond pump-probe diffuse reflection spectroscopy. Reaction rate (R Ag) and the amount of silver ions (Ag+) adsorbed on TiO2 particles ([Ag+]ads) were measured for photocatalytic silver metal deposition along with oxygen formation from an aqueous Ag+ solution under deaerated conditions, and the slope of the R Ag versus [Ag+]ads plot was determined. Kinetic investigation of this reaction showed that the reciprocal of the slope was approximately related to the ratio of the rates for electron-hole recombination and electron trapping (k r/k e ratio). The k r/k e ratio decreased as T c increased, and the logarithm of the k r/k e ratio was linearly related with Ti3+ density. These two parameters were used as a measure for the recombination properties of TiO2 photocatalysts with various physical properties.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Apr 15, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off