Evaluation of assemblability during aero engine preliminary design

Evaluation of assemblability during aero engine preliminary design Despite the constant growth of global air traffic, the competition amongst airlines and their aviation supply chains intensifies. In the future, stricter environmental regulations as well as economic goals will only be met by new aircrafts and aero engines. In order to evaluate the life-cycle related cost at an early stage in the product design process, it is essential to assess the manufacturability and assemblability during preliminary design. Through the assessment of assemblability, major cost drivers can be identified in order to optimize the overall production cost. In this paper, a method to assess the assemblability of different preliminary design variants is introduced. To achieve this, 2D cross sections of actual aero engines are translated into 3D preliminary design models. Finally, an evaluation of the assemblability of different design variants of low pressure turbine modules is conducted. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png CEAS Aeronautical Journal Springer Journals

Evaluation of assemblability during aero engine preliminary design

Loading next page...
 
/lp/springer_journal/evaluation-of-assemblability-during-aero-engine-preliminary-design-TuOrFLgHTF
Publisher
Springer Vienna
Copyright
Copyright © 2018 by Deutsches Zentrum für Luft- und Raumfahrt e.V.
Subject
Engineering; Aerospace Technology and Astronautics
ISSN
1869-5582
eISSN
1869-5590
D.O.I.
10.1007/s13272-017-0278-8
Publisher site
See Article on Publisher Site

Abstract

Despite the constant growth of global air traffic, the competition amongst airlines and their aviation supply chains intensifies. In the future, stricter environmental regulations as well as economic goals will only be met by new aircrafts and aero engines. In order to evaluate the life-cycle related cost at an early stage in the product design process, it is essential to assess the manufacturability and assemblability during preliminary design. Through the assessment of assemblability, major cost drivers can be identified in order to optimize the overall production cost. In this paper, a method to assess the assemblability of different preliminary design variants is introduced. To achieve this, 2D cross sections of actual aero engines are translated into 3D preliminary design models. Finally, an evaluation of the assemblability of different design variants of low pressure turbine modules is conducted.

Journal

CEAS Aeronautical JournalSpringer Journals

Published: Jan 19, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial