Evaluation of Assays to Quantify Infectious Human Norovirus for Heat and High-Pressure Inactivation Studies Using Tulane Virus

Evaluation of Assays to Quantify Infectious Human Norovirus for Heat and High-Pressure... We compared the heat and high hydrostatic pressure (HHP) inactivation results of Tulane virus (TV), a human norovirus (HuNoV) surrogate, obtained by plaque assay, direct quantitative reverse transcription PCR (RT-qPCR), porcine gastric mucin magnetic beads (PGM-MBs) binding assay followed by RT-qPCR (PGM/PCR), and propidium monoazide (PMA) assay followed by RT-qPCR (PMA/PCR). Heat and HHP inactivation of a HuNoV genotype I.1 (GI.1) strain and a genotype II.4 (GII.4) strain was also evaluated using those molecular assays. Viruses were heat treated at 50–90 °C for 2 min and HHP treated at 100–550 MPa at initial temperatures of 4 or 21 °C for 2 min. For heat treatment, the three molecular methods significantly underestimated the inactivation of TV. It could be logically concluded that the PGM/PCR assay was better than the PMA/PCR and direct RT-qPCR assays in estimating the inactivation of HuNoV GI.1. The three molecular methods were comparable in estimating the heat inactivation of GII.4. For HHP treatment, both PGM/PCR and PMA/PCR assays were able to estimate inactivation of TV at ≤~2-log reduction levels, but significantly underestimated its inactivation at >~2-log reduction levels. The direct RT-qPCR assay was the worst method for estimating HHP inactivation of TV. It could be logically concluded that the PGM/PCR and PMA/PCR assays were comparable in estimating the HHP inactivation of GI.1 and both were significantly better than the direct RT-qPCR assay. Among the three molecular methods, the PGM/PCR assay was the best in estimating the HHP inactivation of GII.4. These results demonstrated that the PGM/PCR assay was probably the method of choice in estimating the inactivation of HuNoV GI.1 and GII.4 for heat and HHP treatments, but this method would likely result in underestimation of HuNoV inactivation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Food and Environmental Virology Springer Journals

Evaluation of Assays to Quantify Infectious Human Norovirus for Heat and High-Pressure Inactivation Studies Using Tulane Virus

Loading next page...
 
/lp/springer_journal/evaluation-of-assays-to-quantify-infectious-human-norovirus-for-heat-9ocsaDyvO5
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Biomedicine; Virology; Food Science; Chemistry/Food Science, general
ISSN
1867-0334
eISSN
1867-0342
D.O.I.
10.1007/s12560-017-9288-2
Publisher site
See Article on Publisher Site

Abstract

We compared the heat and high hydrostatic pressure (HHP) inactivation results of Tulane virus (TV), a human norovirus (HuNoV) surrogate, obtained by plaque assay, direct quantitative reverse transcription PCR (RT-qPCR), porcine gastric mucin magnetic beads (PGM-MBs) binding assay followed by RT-qPCR (PGM/PCR), and propidium monoazide (PMA) assay followed by RT-qPCR (PMA/PCR). Heat and HHP inactivation of a HuNoV genotype I.1 (GI.1) strain and a genotype II.4 (GII.4) strain was also evaluated using those molecular assays. Viruses were heat treated at 50–90 °C for 2 min and HHP treated at 100–550 MPa at initial temperatures of 4 or 21 °C for 2 min. For heat treatment, the three molecular methods significantly underestimated the inactivation of TV. It could be logically concluded that the PGM/PCR assay was better than the PMA/PCR and direct RT-qPCR assays in estimating the inactivation of HuNoV GI.1. The three molecular methods were comparable in estimating the heat inactivation of GII.4. For HHP treatment, both PGM/PCR and PMA/PCR assays were able to estimate inactivation of TV at ≤~2-log reduction levels, but significantly underestimated its inactivation at >~2-log reduction levels. The direct RT-qPCR assay was the worst method for estimating HHP inactivation of TV. It could be logically concluded that the PGM/PCR and PMA/PCR assays were comparable in estimating the HHP inactivation of GI.1 and both were significantly better than the direct RT-qPCR assay. Among the three molecular methods, the PGM/PCR assay was the best in estimating the HHP inactivation of GII.4. These results demonstrated that the PGM/PCR assay was probably the method of choice in estimating the inactivation of HuNoV GI.1 and GII.4 for heat and HHP treatments, but this method would likely result in underestimation of HuNoV inactivation.

Journal

Food and Environmental VirologySpringer Journals

Published: Feb 25, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off