Evaluation of an algorithm for automatic detection of broad-leaved weeds in spring cereals

Evaluation of an algorithm for automatic detection of broad-leaved weeds in spring cereals Lack of automatic weed detection tools has hampered the adoption of site-specific weed control in cereals. An initial object-oriented algorithm for the automatic detection of broad-leaved weeds in cereals developed by SINTEF ICT (Oslo, Norway) was evaluated. The algorithm (“WeedFinder”) estimates total density and cover of broad-leaved weed seedlings in cereal fields from near-ground red–green–blue images. The ability of “WeedFinder” to predict ‘spray’/‘no spray’ decisions according to a previously suggested spray decision model for spring cereals was tested with images from two wheat fields sown with the normal row spacing of the region, 0.125 m. Applying the decision model as a simple look-up table, “WeedFinder” gave correct spray decisions in 65–85% of the test images. With discriminant analysis, corresponding mean rates were 84–90%. Future versions of “WeedFinder” must be more accurate and accommodate weed species recognition. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Evaluation of an algorithm for automatic detection of broad-leaved weeds in spring cereals

Loading next page...
 
/lp/springer_journal/evaluation-of-an-algorithm-for-automatic-detection-of-broad-leaved-MXe8A2yWQK
Publisher
Springer Journals
Copyright
Copyright © 2008 by Springer Science+Business Media, LLC
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-008-9083-z
Publisher site
See Article on Publisher Site

Abstract

Lack of automatic weed detection tools has hampered the adoption of site-specific weed control in cereals. An initial object-oriented algorithm for the automatic detection of broad-leaved weeds in cereals developed by SINTEF ICT (Oslo, Norway) was evaluated. The algorithm (“WeedFinder”) estimates total density and cover of broad-leaved weed seedlings in cereal fields from near-ground red–green–blue images. The ability of “WeedFinder” to predict ‘spray’/‘no spray’ decisions according to a previously suggested spray decision model for spring cereals was tested with images from two wheat fields sown with the normal row spacing of the region, 0.125 m. Applying the decision model as a simple look-up table, “WeedFinder” gave correct spray decisions in 65–85% of the test images. With discriminant analysis, corresponding mean rates were 84–90%. Future versions of “WeedFinder” must be more accurate and accommodate weed species recognition.

Journal

Precision AgricultureSpringer Journals

Published: Sep 27, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off