Evaluation of a Two-Site, Three-Barrier Model for Permeation in CaV3.1 (α1G) T-Type Calcium Channels: Ca2+, Ba2+, Mg2+, and Na+

Evaluation of a Two-Site, Three-Barrier Model for Permeation in CaV3.1 (α1G) T-Type Calcium... We explored the ability of a two-site, three-barrier (2S3B) Eyring model to describe recently reported data on current flow through open CaV3.1 T-type calcium channels, varying Ca2+ and Ba2+ over a wide range (100 nm–110 mm) while recording whole-cell currents over a wide voltage range (−150 mV to +100 mV) from channels stably expressed in HEK 293 cells. Effects on permeation were isolated using instantaneous current–voltage relationships (IIV) after strong, brief depolarizations to activate channels with minimal inactivation. Most experimental results were reproduced by a 2S3B model. The model described the IIV relationships, apparent affinities for permeation and block for Ca2+ and Ba2+, and shifts in reversal potential between Ca2+ and Ba2+. The fit to block by 1 mm  $$ {\text{Mg}}^{2+}_{\text{i}} $$ was reasonable, but block by $$ {\text{Mg}}^{2+}_{\text{o}} $$ was described less well. Surprisingly, fits were comparable with strong ion–ion repulsion, with no repulsion, or with intermediate values. With weak repulsion, there was a single high-affinity site, with a low-affinity site near the cytoplasmic side of the pore. With strong repulsion, the net charge of ions in the pore was near +2 over a relatively wide range of concentration and voltage, suggesting a knockoff mechanism. With strong repulsion, Ba2+ preferred the inner site, while Ca2+ preferred the outer site, potentially explaining faster entry of Ni2+ and other pore blockers when Ba2+ is the charge carrier. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Evaluation of a Two-Site, Three-Barrier Model for Permeation in CaV3.1 (α1G) T-Type Calcium Channels: Ca2+, Ba2+, Mg2+, and Na+

Loading next page...
Copyright © 2010 by Springer Science+Business Media, LLC
Life Sciences; Human Physiology ; Biochemistry, general
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial