Evaluation and application of a one-step duplex real-time reverse transcription polymerase chain reaction assay for the rapid detection of influenza A (H7N9) virus from poultry samples

Evaluation and application of a one-step duplex real-time reverse transcription polymerase chain... In China, a novel reassortant influenza A (H7N9) virus, which has caused 435 cases of human infection, has recently emerged. Most cases of human infections with the H7N9 virus are known to be associated with a poultry farm and live-poultry markets. In this study, a one-step duplex real-time reverse transcription polymerase chain reaction (RRT-PCR) assay was developed for the simultaneous detection of the hemagglutinin (HA) and neuraminidase (NA) genes of the H7N9 virus for effective surveillance and early diagnosis of cases from clinical samples collected from live-poultry markets or poultry farms. The detection limit of this assay was as low as 0.1 EID 50 of H7N9 viruses, which is similar to the detection limit of the real-time RT-PCR assay released by the Word Health Organization. The coefficients of variation (CVs) of both inter-assay and intra-assay reproducibility were less than 1.55 %, showing good reproducibility. No cross-reactivity was observed with RNA of other subtypes of influenza virus or other avian respiratory viruses. The assay can effectively detect H7N9 influenza virus RNA from multiple sources, including chickens, pigeons, ducks, humans, and the environment. Furthermore, the RRT-PCR assay was evaluated with more than 700 clinical samples collected from live-poultry markets and 120 experimentally infected chicken samples. Together, these results indicate that the duplex RRT-PCR assay is a specific, sensitive, and efficient diagnostic method for the epidemiological surveillance and diagnosis of H7N9 virus from different sources, particularly poultry samples. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Evaluation and application of a one-step duplex real-time reverse transcription polymerase chain reaction assay for the rapid detection of influenza A (H7N9) virus from poultry samples

Loading next page...
 
/lp/springer_journal/evaluation-and-application-of-a-one-step-duplex-real-time-reverse-MaRUPapEZo
Publisher
Springer Vienna
Copyright
Copyright © 2015 by Springer-Verlag Wien
Subject
Biomedicine; Virology; Medical Microbiology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-015-2511-2
Publisher site
See Article on Publisher Site

Abstract

In China, a novel reassortant influenza A (H7N9) virus, which has caused 435 cases of human infection, has recently emerged. Most cases of human infections with the H7N9 virus are known to be associated with a poultry farm and live-poultry markets. In this study, a one-step duplex real-time reverse transcription polymerase chain reaction (RRT-PCR) assay was developed for the simultaneous detection of the hemagglutinin (HA) and neuraminidase (NA) genes of the H7N9 virus for effective surveillance and early diagnosis of cases from clinical samples collected from live-poultry markets or poultry farms. The detection limit of this assay was as low as 0.1 EID 50 of H7N9 viruses, which is similar to the detection limit of the real-time RT-PCR assay released by the Word Health Organization. The coefficients of variation (CVs) of both inter-assay and intra-assay reproducibility were less than 1.55 %, showing good reproducibility. No cross-reactivity was observed with RNA of other subtypes of influenza virus or other avian respiratory viruses. The assay can effectively detect H7N9 influenza virus RNA from multiple sources, including chickens, pigeons, ducks, humans, and the environment. Furthermore, the RRT-PCR assay was evaluated with more than 700 clinical samples collected from live-poultry markets and 120 experimentally infected chicken samples. Together, these results indicate that the duplex RRT-PCR assay is a specific, sensitive, and efficient diagnostic method for the epidemiological surveillance and diagnosis of H7N9 virus from different sources, particularly poultry samples.

Journal

Archives of VirologySpringer Journals

Published: Oct 1, 2015

References

  • Development of a reverse transcription loop-mediated isothermal amplification method for the rapid detection of avian influenza virus subtype H7
    Bao, H; Wang, X; Zhao, Y; Sun, X; Li, Y; Xiong, Y; Chen, H
  • Epidemiology of human infections with avian influenza A (H7N9) virus in China
    Li, Q; Zhou, L; Zhou, M; Chen, Z; Li, F; Wu, H; Xiang, N; Chen, E; Tang, F; Wang, D
  • Screening for H7N9 influenza A by matrix gene-based real-time reverse-transcription PCR
    Hackett, H; Bialasiewicz, S; Jacob, K; Bletchly, C; Harrower, B; Nimmo, GR; Nissen, MD; Sloots, TP; Whiley, DM

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off