Evaluating unsupervised and supervised image classification methods for mapping cotton root rot

Evaluating unsupervised and supervised image classification methods for mapping cotton root rot Cotton root rot, caused by the soilborne fungus Phymatotrichopsis omnivora, is one of the most destructive plant diseases occurring throughout the southwestern United States. This disease has plagued the cotton industry for over a century, but effective practices for its control are still lacking. Recent research has shown that a commercial fungicide, flutriafol, has potential for the control of cotton root rot. To effectively and economically control this disease, it is necessary to identify infected areas within fields so that site-specific technology can be used to apply fungicide only to the infected areas. The objectives of this study were to evaluate unsupervised classification applied to multispectral imagery, unsupervised classification applied to the normalized difference vegetation index (NDVI)and six supervised classification techniques, including minimum distance, Mahalanobis distance, maximum likelihood and spectral angle mapper (SAM), neural net and support vector machine (SVM),for mapping cotton root rot from airborne multispectral imagery. Two cotton fields with a history of root rot infection in Texas, USA were selected for this study. Airborne imagery with blue, green, red and near-infrared bands was taken from the fields shortly before harvest when infected areas were fully expressed in 2011. The four-band images were classified into infected and non-infected zones using the eight classification methods. Classification agreement index values for infected area estimation between any two methods ranged from 0.90 to 1.00 for both fields, indicating a high degree of agreement among the eight methods. Accuracy assessment showed that all eight methods accurately identified root rot-infected areas with overall accuracy values from 94.0 to 96.5 % for Field 1 and 93.0 to 95.0 % for Field 2. All eight methods appear to be equally effective and accurate for detection of cotton root rot for site-specific management of this disease, though the NDVI-based classification, minimum distance and SAM can be easily implemented without the need for complex image processing capability. These methods can be used by cotton producers and crop consultants to develop prescription maps for effective and economical control of cotton root rot. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Evaluating unsupervised and supervised image classification methods for mapping cotton root rot

Loading next page...
 
/lp/springer_journal/evaluating-unsupervised-and-supervised-image-classification-methods-7VZDzTYmyu
Publisher
Springer US
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-014-9370-9
Publisher site
See Article on Publisher Site

Abstract

Cotton root rot, caused by the soilborne fungus Phymatotrichopsis omnivora, is one of the most destructive plant diseases occurring throughout the southwestern United States. This disease has plagued the cotton industry for over a century, but effective practices for its control are still lacking. Recent research has shown that a commercial fungicide, flutriafol, has potential for the control of cotton root rot. To effectively and economically control this disease, it is necessary to identify infected areas within fields so that site-specific technology can be used to apply fungicide only to the infected areas. The objectives of this study were to evaluate unsupervised classification applied to multispectral imagery, unsupervised classification applied to the normalized difference vegetation index (NDVI)and six supervised classification techniques, including minimum distance, Mahalanobis distance, maximum likelihood and spectral angle mapper (SAM), neural net and support vector machine (SVM),for mapping cotton root rot from airborne multispectral imagery. Two cotton fields with a history of root rot infection in Texas, USA were selected for this study. Airborne imagery with blue, green, red and near-infrared bands was taken from the fields shortly before harvest when infected areas were fully expressed in 2011. The four-band images were classified into infected and non-infected zones using the eight classification methods. Classification agreement index values for infected area estimation between any two methods ranged from 0.90 to 1.00 for both fields, indicating a high degree of agreement among the eight methods. Accuracy assessment showed that all eight methods accurately identified root rot-infected areas with overall accuracy values from 94.0 to 96.5 % for Field 1 and 93.0 to 95.0 % for Field 2. All eight methods appear to be equally effective and accurate for detection of cotton root rot for site-specific management of this disease, though the NDVI-based classification, minimum distance and SAM can be easily implemented without the need for complex image processing capability. These methods can be used by cotton producers and crop consultants to develop prescription maps for effective and economical control of cotton root rot.

Journal

Precision AgricultureSpringer Journals

Published: Sep 11, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off