Evaluating corrections for a horizontal offset between sensor and position data for surveys on land

Evaluating corrections for a horizontal offset between sensor and position data for surveys on land When regarding evolutions in land-based, motorized sensor data collection it can be generalized that the speed of surveying, sampling rates, digital communications speed and survey resolutions have increased over the last years. Possibilities for accurate positioning have been following pace. However, a spatial offset between sensor and position data can be necessary to avoid interference with the instrument or can be the result of using a sensor array. It can also be due to practical considerations such as mounting possibilities. Unfortunately a severe degradation of positional accuracy is possible when performing corrections for a spatial offset and quantification of the induced error is quite difficult. As a consequence, the actual positional accuracy of sensor measurements is therefore often omitted or unknown, and a correction may be neglected during data processing. In this paper, accounting for a horizontal (spatial) offset is researched by examining the use of several correction methods. To evaluate the degree of loss of positional accuracy and validate several correction procedures, global navigation satellite system (GNSS) data (with real-time kinematic correction) have been simultaneously collected, using a GNSS receiver that was mounted on an all-terrain vehicle and two other receivers that were mounted near the front and end of an elongated sensor sled. The sled was connected to the towing vehicle using a flexible connection. Since the positioning systems’ horizontal accuracies were about 20 mm, it was possible to quantify the horizontal error of the predicted positions for the different correction procedures considered. The best approach for high-resolution surveys, which make use of a connection to a cart or sled that can rotate around a pivot on the towing vehicle, was researched. The strengths and weaknesses of the applied corrections were also evaluated, allowing selection of an appropriate correction for a given survey implementation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Evaluating corrections for a horizontal offset between sensor and position data for surveys on land

Loading next page...
Springer US
Copyright © 2015 by Springer Science+Business Media New York
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
Publisher site
See Article on Publisher Site


  • On-the-go soil sensors for precision agriculture
    Adamchuk, VI; Hummel, JW; Morgan, MT; Upadhyaya, SK

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial