Evaluating a time-delay of hydrogen production quantitatively in photosynthetic bacteria for stabilizing intermittency

Evaluating a time-delay of hydrogen production quantitatively in photosynthetic bacteria for... Renewable energy is regarded as a clean energy source but has some problems, one of which is intermittency. To reduce this, the time-delay of hydrogen production by photosynthetic bacteria can be effective. In this study, we qualitatively evaluated the time-delay of hydrogen production by photosynthetic bacteria under various irradiation conditions, and we also quantitatively evaluated it by fitting the experimental data and the hydrogen production model with a genetic algorithm. As a result of model fitting, we found that the relationship between the lengths of the optimized time-delay of hydrogen production by photosynthetic bacteria and the amount of light irradiation is linear. And we also found that the time-delay of hydrogen production by photosynthetic bacteria had an upper limit under low light intensity. We have suggested the existence of an energy store mechanism in photosynthetic bacteria. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Evaluating a time-delay of hydrogen production quantitatively in photosynthetic bacteria for stabilizing intermittency

Loading next page...
 
/lp/springer_journal/evaluating-a-time-delay-of-hydrogen-production-quantitatively-in-zW44eec5Q8
Publisher
Springer Netherlands
Copyright
Copyright © 2016 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-016-2657-x
Publisher site
See Article on Publisher Site

Abstract

Renewable energy is regarded as a clean energy source but has some problems, one of which is intermittency. To reduce this, the time-delay of hydrogen production by photosynthetic bacteria can be effective. In this study, we qualitatively evaluated the time-delay of hydrogen production by photosynthetic bacteria under various irradiation conditions, and we also quantitatively evaluated it by fitting the experimental data and the hydrogen production model with a genetic algorithm. As a result of model fitting, we found that the relationship between the lengths of the optimized time-delay of hydrogen production by photosynthetic bacteria and the amount of light irradiation is linear. And we also found that the time-delay of hydrogen production by photosynthetic bacteria had an upper limit under low light intensity. We have suggested the existence of an energy store mechanism in photosynthetic bacteria.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Sep 2, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off