Estimation of vertical distribution of chlorophyll concentration by bi-directional canopy reflectance spectra in winter wheat

Estimation of vertical distribution of chlorophyll concentration by bi-directional canopy... An effective technique to measure foliage chlorophyll concentration (Chl) at a large scale and within a short time could be a powerful tool to determine fertilization amount for crop management. The objective of this study was to investigate the inversion of foliage Chl vertical-layer distribution by bi-directional reflectance difference function (BRDF) data, so as to provide a theoretical basis for monitoring the growth and development of winter wheat and for providing guidance on the application of fertilizer. Remote sensing could provide a powerful tool for large-area estimation of Chl. Because of the vertical distribution of leaves in a wheat stem, Chl vertical distribution characteristics show an obvious decreasing trend from the top of the canopy to the ground surface. The ratio of transformed chlorophyll absorption reflectance index (TCARI) to optimized soil adjusted vegetation index (OSAVI) was called the canopy chlorophyll inversion index (CCII) in this study. The value of CCII at nadir, ±20 and ±30°, at nadir, ±30 and ±40°, and at nadir, ±50 and ±60° view angles were selected and assembled as bottom-layer Chl inversion index (BLCI), middle-layer Chl inversion index (MLCI), and upper-layer Chl inversion index (ULCI), respectively, for the inversion of Chl at the vertical bottom layer, middle layer, and upper layer. The root mean squared error (RMSE) between BLCI-, MLCI-, and ULCI-derived and laboratory-measured Chl were 0.7841, 0.9426, and 1.7398, respectively. The vertical foliage Chl inversion could be used to monitor the crop growth status and to guide fertilizer and irrigation management. The results suggested that vegetation indices derived from bi-directional reflectance spectra (e.g., BLCI, ULCI, and MLCI) were satisfactory for inversion of the Chl vertical distribution. Precision Agriculture Springer Journals

Estimation of vertical distribution of chlorophyll concentration by bi-directional canopy reflectance spectra in winter wheat

Loading next page...
Springer US
Copyright © 2010 by Springer Science+Business Media, LLC
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
Publisher site
See Article on Publisher Site


  • Patterns of light and nitrogen distribution in relation to whole canopy carbon gain in C3 and C4 mono-and dicotyledonous species
    Anten, NPR; Schieving, F; Werger, MJA
  • A modeling approach for studying forest chlorophyll content
    Demarez, V; Gastellu-Etchegorry, JP

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial