Estimation of the rootzone depth above a gravel layer (in wild blueberry fields) using electromagnetic induction method

Estimation of the rootzone depth above a gravel layer (in wild blueberry fields) using... Wild blueberry (Vaccinium angustifolium Ait.) fields in the north east Canada are naturally grown in a course textured thin layer of soil and below this layer is a soilless layer of gravel. The root zone depth of this crop varies from 10 to 15 cm. Investigating the depth to the gravel layer below the course textured soil is advantageous, as it affects the water holding capacity of the root zone. Water and nutrient management are the two primary determinants of crop yield and the amount of leaching. The objective of this study was to estimate the depth to the gravel layer using DualEM-2 instrument. A C++ program written in Visual Studio 2010 was used to develop mathematical models for estimating the depth to the gravel layer from the outputs of DualEM-2 sensor. Two wild blueberry fields were selected in central Nova Scotia, Canada to evaluate the performance of DualEM-2 instrument in estimating the rootzone depth above the gravel layer. The mid points of squares created by grid lines were used as the sampling points at each experimental site. The actual depth to the interface was measured manually at selected grid points (n = 50). The apparent ground conductivity (ECa) values of DualEM-2 were recorded and the depth to the interface was estimated for the same sampling points within the selected fields. The fruit yield samples were also collected from the same grid points to identify the impact of the depth to the gravel layer on crop yield. After calibrations, comprehensive surveys were conducted and the actual and estimated depths to the interface were established. The interpolated maps of fruit yield, and the actual (zin) and estimated ( $$ {\text{z}}_{\text{in}}^{*} $$ z in ∗ ) depths to the interface were created in ArcGIS 10 software. Results indicated that the zin was significantly correlated with $$ {\text{z}}_{\text{in}}^{*} $$ z in ∗ for the North River (R 2 = 0.73; RMSE = 0.27 m) and the Carmel (R 2 = 0.45; RMSE = 0.20 m) sites. Results revealed that the areas with shallow depth to the gravel layer were low yielding, indicating that the variation in the depth to the gravel layer can have an impact on crop productivity. Non-destructive estimations of the depth to the gravel layer can be used to develop erosion control strategies, which will result in an increased crop production. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Estimation of the rootzone depth above a gravel layer (in wild blueberry fields) using electromagnetic induction method

Loading next page...
 
/lp/springer_journal/estimation-of-the-rootzone-depth-above-a-gravel-layer-in-wild-Xto070tvoy
Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-015-9413-x
Publisher site
See Article on Publisher Site

Abstract

Wild blueberry (Vaccinium angustifolium Ait.) fields in the north east Canada are naturally grown in a course textured thin layer of soil and below this layer is a soilless layer of gravel. The root zone depth of this crop varies from 10 to 15 cm. Investigating the depth to the gravel layer below the course textured soil is advantageous, as it affects the water holding capacity of the root zone. Water and nutrient management are the two primary determinants of crop yield and the amount of leaching. The objective of this study was to estimate the depth to the gravel layer using DualEM-2 instrument. A C++ program written in Visual Studio 2010 was used to develop mathematical models for estimating the depth to the gravel layer from the outputs of DualEM-2 sensor. Two wild blueberry fields were selected in central Nova Scotia, Canada to evaluate the performance of DualEM-2 instrument in estimating the rootzone depth above the gravel layer. The mid points of squares created by grid lines were used as the sampling points at each experimental site. The actual depth to the interface was measured manually at selected grid points (n = 50). The apparent ground conductivity (ECa) values of DualEM-2 were recorded and the depth to the interface was estimated for the same sampling points within the selected fields. The fruit yield samples were also collected from the same grid points to identify the impact of the depth to the gravel layer on crop yield. After calibrations, comprehensive surveys were conducted and the actual and estimated depths to the interface were established. The interpolated maps of fruit yield, and the actual (zin) and estimated ( $$ {\text{z}}_{\text{in}}^{*} $$ z in ∗ ) depths to the interface were created in ArcGIS 10 software. Results indicated that the zin was significantly correlated with $$ {\text{z}}_{\text{in}}^{*} $$ z in ∗ for the North River (R 2 = 0.73; RMSE = 0.27 m) and the Carmel (R 2 = 0.45; RMSE = 0.20 m) sites. Results revealed that the areas with shallow depth to the gravel layer were low yielding, indicating that the variation in the depth to the gravel layer can have an impact on crop productivity. Non-destructive estimations of the depth to the gravel layer can be used to develop erosion control strategies, which will result in an increased crop production.

Journal

Precision AgricultureSpringer Journals

Published: Aug 15, 2015

References

  • Use of an electromagnetic technique to determine sodicity in saline-sodic soils
    Amezketa, E
  • Soil electrical conductivity as a function of soil water content and implications for soil mapping
    Brevik, EC; Fenton, TE; Lazari, A
  • A comparison of EM induction and GPR methods in areas of karst
    Doolittle, JA; Collins, ME

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off