Estimation of the Importance of Spatially Variable Nitrogen Application and Soil Moisture Holding Capacity to Wheat Production

Estimation of the Importance of Spatially Variable Nitrogen Application and Soil Moisture Holding... Crop growth modelling techniques were used to investigate the performance of a wheat crop over a range of weather conditions, nitrogen application rates and soil types. The data were used to predict long term benefits of using spatially variable fertilizer application strategies where fertilizer application rate was matched to the soil type, against a strategy of uniform fertilizer application. The model was also run with modified soil properties to determine the importance of soil moisture holding capacity in the variability of crop yield. It was found that the benefits of spatially variable nitrogen management when fertilizer was applied at the beginning of the season were modest on average. The range of results for different weather conditions was much greater than the average benefit. A large proportion of the variability of crop performance between soil types could be explained by differing soil moisture holding capacity. Devising techniques for managing this variability was concluded to be important for precision farming of cereals. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Estimation of the Importance of Spatially Variable Nitrogen Application and Soil Moisture Holding Capacity to Wheat Production

Loading next page...
 
/lp/springer_journal/estimation-of-the-importance-of-spatially-variable-nitrogen-tO19TldJc0
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1023/A:1009973802295
Publisher site
See Article on Publisher Site

Abstract

Crop growth modelling techniques were used to investigate the performance of a wheat crop over a range of weather conditions, nitrogen application rates and soil types. The data were used to predict long term benefits of using spatially variable fertilizer application strategies where fertilizer application rate was matched to the soil type, against a strategy of uniform fertilizer application. The model was also run with modified soil properties to determine the importance of soil moisture holding capacity in the variability of crop yield. It was found that the benefits of spatially variable nitrogen management when fertilizer was applied at the beginning of the season were modest on average. The range of results for different weather conditions was much greater than the average benefit. A large proportion of the variability of crop performance between soil types could be explained by differing soil moisture holding capacity. Devising techniques for managing this variability was concluded to be important for precision farming of cereals.

Journal

Precision AgricultureSpringer Journals

Published: Oct 6, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off