Estimation of the efficiency of seed irradiation by thermal neutrons for inducing chromosomal aberrations in M1 of cotton Gossypium hirsutum L.

Estimation of the efficiency of seed irradiation by thermal neutrons for inducing chromosomal... Exposure of cotton seeds to thermal neutrons at doses of 15, 25, and 35 Gy was shown to induce many biomorphologically abnormal plants, including sterile and chimeric ones. Most of these phenotypic changes were shown to result from novel genomic, chromosomal, and desynaptic mutations. The presence of these mutations in the karyotype of M1 plants often decreased meiotic index and pollen fertility. In translocation forms, the decrease in pollen fertility was caused by the prevalence of quadrivalents in form of rings and chains with adjacent segregation of chromosomes from the translocation complexes. Based on the shapes and sizes of multivalent associations, we performed preliminary localization of translocation breakpoints. A specific feature of the effect of thermal neuron irradiation in M1 was induction of numerous unique chromosomal aberrations, consisting in the appearance in the same plant of several types of mutations (genomic and chromosomal), interchange complexes in the same nucleus, and multiple interchanges involving three nonhomologous chromosomes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Estimation of the efficiency of seed irradiation by thermal neutrons for inducing chromosomal aberrations in M1 of cotton Gossypium hirsutum L.

Loading next page...
 
/lp/springer_journal/estimation-of-the-efficiency-of-seed-irradiation-by-thermal-neutrons-y13b20P0Dz
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2007 by Pleiades Publishing, Inc.
Subject
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795407040072
Publisher site
See Article on Publisher Site

Abstract

Exposure of cotton seeds to thermal neutrons at doses of 15, 25, and 35 Gy was shown to induce many biomorphologically abnormal plants, including sterile and chimeric ones. Most of these phenotypic changes were shown to result from novel genomic, chromosomal, and desynaptic mutations. The presence of these mutations in the karyotype of M1 plants often decreased meiotic index and pollen fertility. In translocation forms, the decrease in pollen fertility was caused by the prevalence of quadrivalents in form of rings and chains with adjacent segregation of chromosomes from the translocation complexes. Based on the shapes and sizes of multivalent associations, we performed preliminary localization of translocation breakpoints. A specific feature of the effect of thermal neuron irradiation in M1 was induction of numerous unique chromosomal aberrations, consisting in the appearance in the same plant of several types of mutations (genomic and chromosomal), interchange complexes in the same nucleus, and multiple interchanges involving three nonhomologous chromosomes.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Apr 20, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off