Estimation of linear energy transfer distribution for broad-beam carbon-ion radiotherapy at the National Institute of Radiological Sciences, Japan

Estimation of linear energy transfer distribution for broad-beam carbon-ion radiotherapy at the... A treatment of carbon-ion radiotherapy (CIRT) is generally evaluated using the dose weighted by relative biological effectiveness (RBE) while ignoring the radiation quality varying in the patient. In this study, we have developed a method of estimating linear energy transfer (LET) from the RBE in an archived treatment plan to represent the radiation quality of the treatment. The LET in a beam database was associated with the RBE by two fitting functions per energy, one for the spread-out Bragg peak (SOBP) and the other for shallower depths, to be differentiated by RBE per energy per modulation. The estimated LET was generally consistent with the original calculation within a few keV/μm, except for the overkill region near the distal end of SOBP. The knowledge of experimental radiobiology can thereby be associated with CIRT treatments through LET, which will potentially contribute to deeper understanding of clinical radiobiology and further optimization of CIRT. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Radiological Physics and Technology Springer Journals

Estimation of linear energy transfer distribution for broad-beam carbon-ion radiotherapy at the National Institute of Radiological Sciences, Japan

Loading next page...
 
/lp/springer_journal/estimation-of-linear-energy-transfer-distribution-for-broad-beam-mQ1WMxYcAm
Publisher
Springer Singapore
Copyright
Copyright © 2018 by Japanese Society of Radiological Technology and Japan Society of Medical Physics
Subject
Medicine & Public Health; Imaging / Radiology; Nuclear Medicine; Radiotherapy; Medical and Radiation Physics
ISSN
1865-0333
eISSN
1865-0341
D.O.I.
10.1007/s12194-018-0444-7
Publisher site
See Article on Publisher Site

Abstract

A treatment of carbon-ion radiotherapy (CIRT) is generally evaluated using the dose weighted by relative biological effectiveness (RBE) while ignoring the radiation quality varying in the patient. In this study, we have developed a method of estimating linear energy transfer (LET) from the RBE in an archived treatment plan to represent the radiation quality of the treatment. The LET in a beam database was associated with the RBE by two fitting functions per energy, one for the spread-out Bragg peak (SOBP) and the other for shallower depths, to be differentiated by RBE per energy per modulation. The estimated LET was generally consistent with the original calculation within a few keV/μm, except for the overkill region near the distal end of SOBP. The knowledge of experimental radiobiology can thereby be associated with CIRT treatments through LET, which will potentially contribute to deeper understanding of clinical radiobiology and further optimization of CIRT.

Journal

Radiological Physics and TechnologySpringer Journals

Published: Feb 22, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off