Estimation of ground cavity configurations using ground penetrating radar and time domain reflectometry

Estimation of ground cavity configurations using ground penetrating radar and time domain... Ground cavity configurations, including depth, roof shape, and length, are the main factors affecting the risk of ground sinkholes. In this study, ground penetrating radar and time domain reflectometry are applied to estimate the ground cavity configurations. To accurately estimate ground relative permittivity with depth, a penetrometer incorporated with a time domain reflectometry (PTDR) system is developed. In addition, a new method is established to calculate the coordinates of the reflection points. Experimental studies are conducted on ground models prepared in different soil types with buried objects of various shapes to simulate ground cavities by using circular rubber tubes and rectangular and trapezoidal polystyrene objects. The experimental studies show that the estimated depths of the buried objects are identical to the experimental setup. The estimated roof shapes clearly represent the roof shapes of the buried objects. In addition, the estimated diameters of the rubber tubes and the estimated lengths of the polystyrene objects show good agreement with those of the buried objects. This study shows that the ground penetrating radar survey, PTDR test, and the new method for estimating ground cavity configurations may be effectively used to assess the risk of ground sinkholes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Natural Hazards Springer Journals

Estimation of ground cavity configurations using ground penetrating radar and time domain reflectometry

Loading next page...
 
/lp/springer_journal/estimation-of-ground-cavity-configurations-using-ground-penetrating-MgyaqrVOQX
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Earth Sciences; Natural Hazards; Hydrogeology; Geophysics/Geodesy; Geotechnical Engineering & Applied Earth Sciences; Civil Engineering; Environmental Management
ISSN
0921-030X
eISSN
1573-0840
D.O.I.
10.1007/s11069-018-3278-z
Publisher site
See Article on Publisher Site

Abstract

Ground cavity configurations, including depth, roof shape, and length, are the main factors affecting the risk of ground sinkholes. In this study, ground penetrating radar and time domain reflectometry are applied to estimate the ground cavity configurations. To accurately estimate ground relative permittivity with depth, a penetrometer incorporated with a time domain reflectometry (PTDR) system is developed. In addition, a new method is established to calculate the coordinates of the reflection points. Experimental studies are conducted on ground models prepared in different soil types with buried objects of various shapes to simulate ground cavities by using circular rubber tubes and rectangular and trapezoidal polystyrene objects. The experimental studies show that the estimated depths of the buried objects are identical to the experimental setup. The estimated roof shapes clearly represent the roof shapes of the buried objects. In addition, the estimated diameters of the rubber tubes and the estimated lengths of the polystyrene objects show good agreement with those of the buried objects. This study shows that the ground penetrating radar survey, PTDR test, and the new method for estimating ground cavity configurations may be effectively used to assess the risk of ground sinkholes.

Journal

Natural HazardsSpringer Journals

Published: Mar 23, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off