Estimation of foraging on the sea urchin Strongylocentrotus droebachiensis (Echinoidea: Echinoida) by the red king crab Paralithodes camtschaticus (Malacostraca: Decapoda) in coastal waters of the Barents Sea

Estimation of foraging on the sea urchin Strongylocentrotus droebachiensis (Echinoidea:... A new method for the estimation of foraging on the sea urchin Strongylocentrotus droebachiensis (O.F. Müller, 1776) by the red king crab Paralithodes camtschaticus (Tilesius, 1815) is proposed. This method uses the reconstruction of the size, number, and biomass of eaten sea urchins, based on fragments of their teeth and tests from the crab’s digestive tract. Data obtained by this method suggest that in shallow waters of the Barents Sea (Kola Bay, Dal’nezelenetskaya Bay) adult, most often, female and immature crabs predominantly consume juvenile sea urchins. The weight of sea urchins daily eaten by one adult red king crab was 0.2–8.0% of its body weight for sexually mature crabs and 3.0–28.0% for immature specimens. Damage inflicted to the S. droebachiensis population as a result of the crab feeding activity was estimated to be at least 10% of the sea urchin biomass in Dal’nezelenetskaya Inlet and at least 30% in Kola Bay. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Marine Biology Springer Journals

Estimation of foraging on the sea urchin Strongylocentrotus droebachiensis (Echinoidea: Echinoida) by the red king crab Paralithodes camtschaticus (Malacostraca: Decapoda) in coastal waters of the Barents Sea

Loading next page...
 
/lp/springer_journal/estimation-of-foraging-on-the-sea-urchin-strongylocentrotus-D4VXVlr3p0
Publisher
Springer Journals
Copyright
Copyright © 2009 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Freshwater & Marine Ecology
ISSN
1063-0740
eISSN
1608-3377
D.O.I.
10.1134/S1063074009040038
Publisher site
See Article on Publisher Site

Abstract

A new method for the estimation of foraging on the sea urchin Strongylocentrotus droebachiensis (O.F. Müller, 1776) by the red king crab Paralithodes camtschaticus (Tilesius, 1815) is proposed. This method uses the reconstruction of the size, number, and biomass of eaten sea urchins, based on fragments of their teeth and tests from the crab’s digestive tract. Data obtained by this method suggest that in shallow waters of the Barents Sea (Kola Bay, Dal’nezelenetskaya Bay) adult, most often, female and immature crabs predominantly consume juvenile sea urchins. The weight of sea urchins daily eaten by one adult red king crab was 0.2–8.0% of its body weight for sexually mature crabs and 3.0–28.0% for immature specimens. Damage inflicted to the S. droebachiensis population as a result of the crab feeding activity was estimated to be at least 10% of the sea urchin biomass in Dal’nezelenetskaya Inlet and at least 30% in Kola Bay.

Journal

Russian Journal of Marine BiologySpringer Journals

Published: Sep 4, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off