Estimation and Cancellation of Nonlinear Companding Noise for Companded Multicarrier Transmission Systems

Estimation and Cancellation of Nonlinear Companding Noise for Companded Multicarrier Transmission... Nonlinear companding transform (NCT) is an efficient method to reduce the high peak-to-average power ratio (PAPR) of multicarrier transmission systems. However, the introduced companding noise severely restrains the bit-error-rate (BER) performance. In this paper, a general and simple companding noise cancellation (CNC) technique is proposed to mitigate the nonlinear companding noise at the receiver. By exploiting the Bussgang theorem and reconstructing the companding process at the transmitter, the estimated approximate companding noise can be used to refine the received signals. Furthermore, by employing the proposed approach to a typical exponential companding (EC), our results indicate that the proposed scheme can greatly relieve the conventional bottleneck, i.e. the so-called trade-off between the PAPR reduction and BER performance, of NCTs. It shows that for a 512-subcarrier and quadrature phase shift keying modulated orthogonal frequency division multiplexing system, the gap of the signal-to-noise ratio is no more than 0.3 dB at $${P_e} = 1 \times {10^{ - 5}}$$ P e = 1 × 10 - 5 between the ideal performance bound and EC-CNC regardless of the companding degree ( $$d=1$$ d = 1 or $$d=2$$ d = 2 ) over additive white Gaussian noise channel. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wireless Personal Communications Springer Journals

Estimation and Cancellation of Nonlinear Companding Noise for Companded Multicarrier Transmission Systems

Loading next page...
 
/lp/springer_journal/estimation-and-cancellation-of-nonlinear-companding-noise-for-uZmOcdjdLb
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Engineering; Communications Engineering, Networks; Signal,Image and Speech Processing; Computer Communication Networks
ISSN
0929-6212
eISSN
1572-834X
D.O.I.
10.1007/s11277-017-4174-7
Publisher site
See Article on Publisher Site

Abstract

Nonlinear companding transform (NCT) is an efficient method to reduce the high peak-to-average power ratio (PAPR) of multicarrier transmission systems. However, the introduced companding noise severely restrains the bit-error-rate (BER) performance. In this paper, a general and simple companding noise cancellation (CNC) technique is proposed to mitigate the nonlinear companding noise at the receiver. By exploiting the Bussgang theorem and reconstructing the companding process at the transmitter, the estimated approximate companding noise can be used to refine the received signals. Furthermore, by employing the proposed approach to a typical exponential companding (EC), our results indicate that the proposed scheme can greatly relieve the conventional bottleneck, i.e. the so-called trade-off between the PAPR reduction and BER performance, of NCTs. It shows that for a 512-subcarrier and quadrature phase shift keying modulated orthogonal frequency division multiplexing system, the gap of the signal-to-noise ratio is no more than 0.3 dB at $${P_e} = 1 \times {10^{ - 5}}$$ P e = 1 × 10 - 5 between the ideal performance bound and EC-CNC regardless of the companding degree ( $$d=1$$ d = 1 or $$d=2$$ d = 2 ) over additive white Gaussian noise channel.

Journal

Wireless Personal CommunicationsSpringer Journals

Published: Apr 28, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off