Estimating the magnitude of morphoscapes: how to measure the morphological component of biodiversity in relation to habitats using geometric morphometrics

Estimating the magnitude of morphoscapes: how to measure the morphological component of... Ecological indicators are currently developed to account for the different facets of loss of biological diversity due to direct or indirect effects of human activities. Most ecological indicators include species richness as a metric. Others, such as functional traits and phylogenetic diversity, account for differences in species, even when species richness is the same. Here, we describe and apply a different indicator, called morphoscape dimension, accounting for morphological variability across habitats in a geographical region. We use the case of ground beetles (Coleoptera: Carabidae) in four different habitats in the Po Plain in Northern Italy to exemplify how to quantify the magnitude of the morphological space (i.e. the dimension of the morphoscape) occupied by the species in each habitat using geometric morphometrics. To this aim, we employed a variety of metrics of morphological disparity related to univariate size, and more complex multivariate shape and form. Our ‘proof of concept’ suggests that metrics assessing size and form might largely tend to simply mirror the information provided by species richness, whereas shape morphoscape disparity may be able to account for non-trivial differences in species traits amongst habitats. This is indicated by the woodland morphoscape being on average bigger than that of crops, the most species-rich habitat, despite having almost 20% less species. We conclude suggesting that the analysis of morphoscape dimension has the potential to become a new additional and complimentary tool in the hands of conservation biologists and ecologists to explore and quantify habitat complexity and inform decisions on management and conservation based on a wide set of ecological indicators. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Naturwissenschaften Springer Journals

Estimating the magnitude of morphoscapes: how to measure the morphological component of biodiversity in relation to habitats using geometric morphometrics

Loading next page...
 
/lp/springer_journal/estimating-the-magnitude-of-morphoscapes-how-to-measure-the-ZqoKMJvrCM
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Life Sciences; Life Sciences, general; Environment, general
ISSN
0028-1042
eISSN
1432-1904
D.O.I.
10.1007/s00114-017-1475-3
Publisher site
See Article on Publisher Site

Abstract

Ecological indicators are currently developed to account for the different facets of loss of biological diversity due to direct or indirect effects of human activities. Most ecological indicators include species richness as a metric. Others, such as functional traits and phylogenetic diversity, account for differences in species, even when species richness is the same. Here, we describe and apply a different indicator, called morphoscape dimension, accounting for morphological variability across habitats in a geographical region. We use the case of ground beetles (Coleoptera: Carabidae) in four different habitats in the Po Plain in Northern Italy to exemplify how to quantify the magnitude of the morphological space (i.e. the dimension of the morphoscape) occupied by the species in each habitat using geometric morphometrics. To this aim, we employed a variety of metrics of morphological disparity related to univariate size, and more complex multivariate shape and form. Our ‘proof of concept’ suggests that metrics assessing size and form might largely tend to simply mirror the information provided by species richness, whereas shape morphoscape disparity may be able to account for non-trivial differences in species traits amongst habitats. This is indicated by the woodland morphoscape being on average bigger than that of crops, the most species-rich habitat, despite having almost 20% less species. We conclude suggesting that the analysis of morphoscape dimension has the potential to become a new additional and complimentary tool in the hands of conservation biologists and ecologists to explore and quantify habitat complexity and inform decisions on management and conservation based on a wide set of ecological indicators.

Journal

NaturwissenschaftenSpringer Journals

Published: Jun 22, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off