Estimating the Antimicrobial Log Reduction: Part 2. Presence/Absence Assays

Estimating the Antimicrobial Log Reduction: Part 2. Presence/Absence Assays This is part 2 of a pair of papers on antimicrobial assays conducted to estimate the log reduction (LR), in the density of viable microbes, attributable to the germicide. Two alternative definitions of LR were defined in part 1, one based on the mean of the log-transformed densities; the other is based on the logarithm of the mean of densities. In this paper, we evaluate statistical methods for estimating LR from an antimicrobial assay in which the responses are presence/absence observations at each dilution in a series of dilutions. We provide a model for the presence/absence data, and, for each definition of LR, we derive the maximum likelihood estimator (mle). Using computer simulation methods, we compare the mle to several alternative estimators, including an estimator based on averaging the log-transformed most probable number (mpn) values. Standard error formulas for the estimators are also derived and evaluated using computer simulations. This investigation results in the following recommendations. If the parameter of interest is based on the mean of log-transformed densities, then the results favor use of the log-transformed mpn method. If, however, the parameter of interest is based on the logarithm of the mean of densities, then the results show that the mle should be used. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantitative Microbiology Springer Journals

Estimating the Antimicrobial Log Reduction: Part 2. Presence/Absence Assays

Loading next page...
 
/lp/springer_journal/estimating-the-antimicrobial-log-reduction-part-2-presence-absence-mniqrIr49U
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Environment; Environmental Engineering/Biotechnology
ISSN
1388-3593
eISSN
1572-9923
D.O.I.
10.1023/A:1010024327646
Publisher site
See Article on Publisher Site

Abstract

This is part 2 of a pair of papers on antimicrobial assays conducted to estimate the log reduction (LR), in the density of viable microbes, attributable to the germicide. Two alternative definitions of LR were defined in part 1, one based on the mean of the log-transformed densities; the other is based on the logarithm of the mean of densities. In this paper, we evaluate statistical methods for estimating LR from an antimicrobial assay in which the responses are presence/absence observations at each dilution in a series of dilutions. We provide a model for the presence/absence data, and, for each definition of LR, we derive the maximum likelihood estimator (mle). Using computer simulation methods, we compare the mle to several alternative estimators, including an estimator based on averaging the log-transformed most probable number (mpn) values. Standard error formulas for the estimators are also derived and evaluated using computer simulations. This investigation results in the following recommendations. If the parameter of interest is based on the mean of log-transformed densities, then the results favor use of the log-transformed mpn method. If, however, the parameter of interest is based on the logarithm of the mean of densities, then the results show that the mle should be used.

Journal

Quantitative MicrobiologySpringer Journals

Published: Oct 15, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off