Estimating nitrogen concentration in rape from hyperspectral data at canopy level using support vector machines

Estimating nitrogen concentration in rape from hyperspectral data at canopy level using support... The estimation of nitrogen concentration from remotely sensed data has been the subject of some work. However, few studies have addressed the effective model for monitoring nitrogen status at canopy level using Support Vector Machines (SVM). The present study is focused on the assessment of an estimation model for nitrogen concentration of rape canopy with hyperspectral data. Two types of estimation model, the traditional statistical method based on stepwise linear regression (SLR) and the emerging computationally powerful techniques based on support vector machines were applied The Root Mean Square Error (RMSE) and T values were used to assess their predictability. The results show that a better agreement between the observed and the predicted nitrogen concentration were obtained by using the SVM model. Compared to the SLR model, the SVM model improved the results by lowering RMSE by 11.86–21.13 %, and by increasing T by 20.00–29.41 % for different spectral transformations. The study demonstrated the potential of SVM to estimate nitrogen concentration using canopy level hyperspectral data and it was concluded that SVM may provide a useful exploratory and predictive tool when applied to canopy-level hyperspectral reflectance data for monitoring nitrogen status of rape. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Estimating nitrogen concentration in rape from hyperspectral data at canopy level using support vector machines

Loading next page...
 
/lp/springer_journal/estimating-nitrogen-concentration-in-rape-from-hyperspectral-data-at-i0xyA0OxB5
Publisher
Springer US
Copyright
Copyright © 2012 by Springer Science+Business Media, LLC
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Meteorology/Climatology
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-012-9285-2
Publisher site
See Article on Publisher Site

Abstract

The estimation of nitrogen concentration from remotely sensed data has been the subject of some work. However, few studies have addressed the effective model for monitoring nitrogen status at canopy level using Support Vector Machines (SVM). The present study is focused on the assessment of an estimation model for nitrogen concentration of rape canopy with hyperspectral data. Two types of estimation model, the traditional statistical method based on stepwise linear regression (SLR) and the emerging computationally powerful techniques based on support vector machines were applied The Root Mean Square Error (RMSE) and T values were used to assess their predictability. The results show that a better agreement between the observed and the predicted nitrogen concentration were obtained by using the SVM model. Compared to the SLR model, the SVM model improved the results by lowering RMSE by 11.86–21.13 %, and by increasing T by 20.00–29.41 % for different spectral transformations. The study demonstrated the potential of SVM to estimate nitrogen concentration using canopy level hyperspectral data and it was concluded that SVM may provide a useful exploratory and predictive tool when applied to canopy-level hyperspectral reflectance data for monitoring nitrogen status of rape.

Journal

Precision AgricultureSpringer Journals

Published: Sep 27, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off