Estimating nitrogen concentration in rape from hyperspectral data at canopy level using support vector machines

Estimating nitrogen concentration in rape from hyperspectral data at canopy level using support... The estimation of nitrogen concentration from remotely sensed data has been the subject of some work. However, few studies have addressed the effective model for monitoring nitrogen status at canopy level using Support Vector Machines (SVM). The present study is focused on the assessment of an estimation model for nitrogen concentration of rape canopy with hyperspectral data. Two types of estimation model, the traditional statistical method based on stepwise linear regression (SLR) and the emerging computationally powerful techniques based on support vector machines were applied The Root Mean Square Error (RMSE) and T values were used to assess their predictability. The results show that a better agreement between the observed and the predicted nitrogen concentration were obtained by using the SVM model. Compared to the SLR model, the SVM model improved the results by lowering RMSE by 11.86–21.13 %, and by increasing T by 20.00–29.41 % for different spectral transformations. The study demonstrated the potential of SVM to estimate nitrogen concentration using canopy level hyperspectral data and it was concluded that SVM may provide a useful exploratory and predictive tool when applied to canopy-level hyperspectral reflectance data for monitoring nitrogen status of rape. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Estimating nitrogen concentration in rape from hyperspectral data at canopy level using support vector machines

Loading next page...
 
/lp/springer_journal/estimating-nitrogen-concentration-in-rape-from-hyperspectral-data-at-i0xyA0OxB5
Publisher
Springer US
Copyright
Copyright © 2012 by Springer Science+Business Media, LLC
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Meteorology/Climatology
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-012-9285-2
Publisher site
See Article on Publisher Site

Abstract

The estimation of nitrogen concentration from remotely sensed data has been the subject of some work. However, few studies have addressed the effective model for monitoring nitrogen status at canopy level using Support Vector Machines (SVM). The present study is focused on the assessment of an estimation model for nitrogen concentration of rape canopy with hyperspectral data. Two types of estimation model, the traditional statistical method based on stepwise linear regression (SLR) and the emerging computationally powerful techniques based on support vector machines were applied The Root Mean Square Error (RMSE) and T values were used to assess their predictability. The results show that a better agreement between the observed and the predicted nitrogen concentration were obtained by using the SVM model. Compared to the SLR model, the SVM model improved the results by lowering RMSE by 11.86–21.13 %, and by increasing T by 20.00–29.41 % for different spectral transformations. The study demonstrated the potential of SVM to estimate nitrogen concentration using canopy level hyperspectral data and it was concluded that SVM may provide a useful exploratory and predictive tool when applied to canopy-level hyperspectral reflectance data for monitoring nitrogen status of rape.

Journal

Precision AgricultureSpringer Journals

Published: Sep 27, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off