Estimates for discontinuity jumps of information characteristics of quantum systems and channels

Estimates for discontinuity jumps of information characteristics of quantum systems and channels Quantitative analysis of discontinuity of information characteristics of quantum states and channels is presented. Estimates for discontinuity jump (loss) of the von Neumann entropy for a given converging sequence of states are obtained. It is shown, in particular, that for any sequence the loss of entropy is upper bounded by the loss of mean energy (with the coefficient characterizing the Hamiltonian of a system). Then we prove that discontinuity jumps of basic measures of classical and quantum correlations in composite quantum systems are upper bounded by the loss of one of the marginal entropies (with a corresponding coefficient). Quantitative discontinuity analysis of the output entropy of a quantum operation and of basic information characteristics of a quantum channel considered as functions of a pair (channel, input state) is presented. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Problems of Information Transmission Springer Journals

Estimates for discontinuity jumps of information characteristics of quantum systems and channels

Loading next page...
 
/lp/springer_journal/estimates-for-discontinuity-jumps-of-information-characteristics-of-hNiGrnzyc0
Publisher
Springer Journals
Copyright
Copyright © 2016 by Pleiades Publishing, Inc.
Subject
Engineering; Communications Engineering, Networks; Electrical Engineering; Information Storage and Retrieval; Systems Theory, Control
ISSN
0032-9460
eISSN
1608-3253
D.O.I.
10.1134/S0032946016030030
Publisher site
See Article on Publisher Site

Abstract

Quantitative analysis of discontinuity of information characteristics of quantum states and channels is presented. Estimates for discontinuity jump (loss) of the von Neumann entropy for a given converging sequence of states are obtained. It is shown, in particular, that for any sequence the loss of entropy is upper bounded by the loss of mean energy (with the coefficient characterizing the Hamiltonian of a system). Then we prove that discontinuity jumps of basic measures of classical and quantum correlations in composite quantum systems are upper bounded by the loss of one of the marginal entropies (with a corresponding coefficient). Quantitative discontinuity analysis of the output entropy of a quantum operation and of basic information characteristics of a quantum channel considered as functions of a pair (channel, input state) is presented.

Journal

Problems of Information TransmissionSpringer Journals

Published: Oct 19, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off