Esteblishment and characterization of the line of Fagopyrum tataricum morphogenic callus tolerant to aminotriazole

Esteblishment and characterization of the line of Fagopyrum tataricum morphogenic callus tolerant... It is shown that the inhibitor of catalase 3-amino-1,2,4-triazole (AT) at the concentration of 2 mM affected differently growth of tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) callus lines differing in the morphogenecity. In some cases, AT induced the death of a great fraction of non-morphogenic callus cells; in other cases, it inhibited growth and reduced viability of morphogenic callus. The death of non-morphogenic callus cells may be related to the accumulation of hydrogen peroxide and the development of oxidative stress. After morphogenic callus treatment with AT, we obtained a modified line 1–8 AT tolerant to AT and differing from the original line in morphology, cell sizes, proliferative activity, and some biochemical characteristics. In the 1–8 AT line, catalase was sensitive to this inhibitor action. In this case, catalase inactivation with AT did not increase the content of hydrogen peroxide in the cells, which may indicate the compensatory functioning of another/others mechanism(s) destroying hydrogen peroxide. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Esteblishment and characterization of the line of Fagopyrum tataricum morphogenic callus tolerant to aminotriazole

Loading next page...
 
/lp/springer_journal/esteblishment-and-characterization-of-the-line-of-fagopyrum-tataricum-yPnBbOtej0
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2012 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443712050172
Publisher site
See Article on Publisher Site

Abstract

It is shown that the inhibitor of catalase 3-amino-1,2,4-triazole (AT) at the concentration of 2 mM affected differently growth of tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) callus lines differing in the morphogenecity. In some cases, AT induced the death of a great fraction of non-morphogenic callus cells; in other cases, it inhibited growth and reduced viability of morphogenic callus. The death of non-morphogenic callus cells may be related to the accumulation of hydrogen peroxide and the development of oxidative stress. After morphogenic callus treatment with AT, we obtained a modified line 1–8 AT tolerant to AT and differing from the original line in morphology, cell sizes, proliferative activity, and some biochemical characteristics. In the 1–8 AT line, catalase was sensitive to this inhibitor action. In this case, catalase inactivation with AT did not increase the content of hydrogen peroxide in the cells, which may indicate the compensatory functioning of another/others mechanism(s) destroying hydrogen peroxide.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Aug 16, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off