Establishment of cell lines using a doxycycline-inducible gene expression system to regulate expression of hepatitis B virus X protein

Establishment of cell lines using a doxycycline-inducible gene expression system to regulate... The hepatitis B virus (HBV) X gene plays an important role in HBV-associated pathogenesis, especially hepatocarcinogenesis. Establishment of a stable and regulable HBx expression system will allow study of the function of this gene. Here, we describe the development of a doxycycline-inducible recombinant plasmid (pBPSTR3-FlagX) with the full-length HBV X gene and all components of the tetracycline-on (“Tet-on”) gene expression system. This vector exhibited dose-dependent doxycycline-dependent induction of the Flag-HBx protein in HepG2 and Hep3B cells. We also observed dose-dependent doxycycline transactivation of HBx in HepG2 cells. After transfecting HepG2 cells with the pBPSTR3-FlagX plasmid, we isolated five puromycin-resistant cell clones with stable HBx expression, two of which exhibited stable and tight control of HBx expression by doxycycline. This new system has great potential for functional studies of the HBV X gene. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Establishment of cell lines using a doxycycline-inducible gene expression system to regulate expression of hepatitis B virus X protein

Loading next page...
 
/lp/springer_journal/establishment-of-cell-lines-using-a-doxycycline-inducible-gene-mbAWCulMFy
Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Biomedicine; Infectious Diseases; Medical Microbiology ; Virology
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-009-0402-0
Publisher site
See Article on Publisher Site

Abstract

The hepatitis B virus (HBV) X gene plays an important role in HBV-associated pathogenesis, especially hepatocarcinogenesis. Establishment of a stable and regulable HBx expression system will allow study of the function of this gene. Here, we describe the development of a doxycycline-inducible recombinant plasmid (pBPSTR3-FlagX) with the full-length HBV X gene and all components of the tetracycline-on (“Tet-on”) gene expression system. This vector exhibited dose-dependent doxycycline-dependent induction of the Flag-HBx protein in HepG2 and Hep3B cells. We also observed dose-dependent doxycycline transactivation of HBx in HepG2 cells. After transfecting HepG2 cells with the pBPSTR3-FlagX plasmid, we isolated five puromycin-resistant cell clones with stable HBx expression, two of which exhibited stable and tight control of HBx expression by doxycycline. This new system has great potential for functional studies of the HBV X gene.

Journal

Archives of VirologySpringer Journals

Published: Jul 1, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off