Establishment of a markerless gene deletion system in Chromohalobacter salexigens DSM 3043

Establishment of a markerless gene deletion system in Chromohalobacter salexigens DSM 3043 Chromohalobacter salexigens DSM 3043 can grow over a wide range of salinity, which makes it as an excellent model organism for understanding the mechanism of prokaryotic osmoregulation. Functional analysis of C. salexigens genes is an essential way to reveal their roles in cellular osmoregulation. However, the lack of an effective markerless gene deletion system has prevented construction of multiple gene deletion mutants for the members in the genus. Here, we report the development of a markerless gene deletion system in C. salexigens using allelic exchange method. In this system, the in vitro mutant allele of target gene was inserted into a pK18mobsacB-based integrative vector pMDC21, which contained a chloramphenicol resistance cassette as the positive selection marker and a sacB gene from Bacillus subtilis as the counterselectable marker. To validate this system, two single-gene deletion mutants and a double-gene deletion mutant were constructed. In addition, our results showed that growth of the merodiploids and sucrose screening at 25 °C were more effective to decrease the occurrence of spontaneous sucrose resistance colonies than at higher temperature (30 or 37 °C), and growth of the merodiploids in mineral salt medium instead of the complex medium was critical to increase the recovery rate of deletion mutants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Extremophiles Springer Journals

Establishment of a markerless gene deletion system in Chromohalobacter salexigens DSM 3043

Loading next page...
 
/lp/springer_journal/establishment-of-a-markerless-gene-deletion-system-in-chromohalobacter-Cj1nYb4U1K
Publisher
Springer Japan
Copyright
Copyright © 2017 by Springer Japan KK
Subject
Life Sciences; Microbiology; Biotechnology; Biochemistry, general; Microbial Ecology
ISSN
1431-0651
eISSN
1433-4909
D.O.I.
10.1007/s00792-017-0946-y
Publisher site
See Article on Publisher Site

Abstract

Chromohalobacter salexigens DSM 3043 can grow over a wide range of salinity, which makes it as an excellent model organism for understanding the mechanism of prokaryotic osmoregulation. Functional analysis of C. salexigens genes is an essential way to reveal their roles in cellular osmoregulation. However, the lack of an effective markerless gene deletion system has prevented construction of multiple gene deletion mutants for the members in the genus. Here, we report the development of a markerless gene deletion system in C. salexigens using allelic exchange method. In this system, the in vitro mutant allele of target gene was inserted into a pK18mobsacB-based integrative vector pMDC21, which contained a chloramphenicol resistance cassette as the positive selection marker and a sacB gene from Bacillus subtilis as the counterselectable marker. To validate this system, two single-gene deletion mutants and a double-gene deletion mutant were constructed. In addition, our results showed that growth of the merodiploids and sucrose screening at 25 °C were more effective to decrease the occurrence of spontaneous sucrose resistance colonies than at higher temperature (30 or 37 °C), and growth of the merodiploids in mineral salt medium instead of the complex medium was critical to increase the recovery rate of deletion mutants.

Journal

ExtremophilesSpringer Journals

Published: Jun 28, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off