Establishment and experimental validation of an updated predictive equation for the development and lap-spliced length of GFRP bars in concrete

Establishment and experimental validation of an updated predictive equation for the development... Glass fibre-reinforced polymer (GFRP) reinforcement due to its physical and mechanical behavior has a completely different bond behavior compared to the steel bars. In this paper, an equation is proposed to predict the splice length in GFRP-reinforced concrete beams. First, equations for the local bond strength and displacement modulus of GFRP bars are obtained by using the eccentric and concentric pull-out test results given in the literature. Then, an equation is derived for the bond strength of spliced GFRP bars in beams. In the derivation of this equation, the non-uniform distribution of the bond stress along the splice length and the effect of elastic modulus of GFRP bars are taken into account. Compared to other available equations and design guidelines, the proposed equation for bond strength calculation shows good agreement with the experimental results. Using the proposed equation for bond strength, an equation is also proposed for the splice length of GFRP bars. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Materials and Structures Springer Journals

Establishment and experimental validation of an updated predictive equation for the development and lap-spliced length of GFRP bars in concrete

Loading next page...
 
/lp/springer_journal/establishment-and-experimental-validation-of-an-updated-predictive-lbsv9mc9hS
Publisher
Springer Journals
Copyright
Copyright © 2018 by RILEM
Subject
Engineering; Structural Mechanics; Materials Science, general; Theoretical and Applied Mechanics; Operating Procedures, Materials Treatment; Civil Engineering; Building Materials
ISSN
1359-5997
eISSN
1871-6873
D.O.I.
10.1617/s11527-018-1137-8
Publisher site
See Article on Publisher Site

Abstract

Glass fibre-reinforced polymer (GFRP) reinforcement due to its physical and mechanical behavior has a completely different bond behavior compared to the steel bars. In this paper, an equation is proposed to predict the splice length in GFRP-reinforced concrete beams. First, equations for the local bond strength and displacement modulus of GFRP bars are obtained by using the eccentric and concentric pull-out test results given in the literature. Then, an equation is derived for the bond strength of spliced GFRP bars in beams. In the derivation of this equation, the non-uniform distribution of the bond stress along the splice length and the effect of elastic modulus of GFRP bars are taken into account. Compared to other available equations and design guidelines, the proposed equation for bond strength calculation shows good agreement with the experimental results. Using the proposed equation for bond strength, an equation is also proposed for the splice length of GFRP bars.

Journal

Materials and StructuresSpringer Journals

Published: Jan 17, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off