Establishment and characterization of the NCC–SS1–C1 synovial sarcoma cell line

Establishment and characterization of the NCC–SS1–C1 synovial sarcoma cell line Synovial sarcoma is an aggressive mesenchymal malignancy characterized by unique gene fusions. Tissue culture cells are essential tools for further understanding tumorigenesis and anti-cancer drug development; however, only a limited number of well-characterized synovial sarcoma cell lines exist. Thus, the objective of this study was to establish a patient-derived synovial sarcoma cell line. We established a synovial sarcoma cell line from tumor tissue isolated from a 72-year-old female patient. Prepared cells were analyzed for the presence of gene fusions by fluorescence in situ hybridization, RT-PCR, and karyotyping. In addition, the resulting cell line was characterized by viability, short tandem repeat, colony and spheroid formation, and invasion analyses. Differences in gene enrichment between the primary tumor and cell line were examined by mass spectrometric protein expression profiling and KEGG pathway analysis. Our analyses revealed that the primary tumor and NCC–SS1–C1 cell line harbored the SS18–SSX1 fusion gene typical of synovial sarcoma and similar proteomics profiles. In vitro analyses also confirmed that the established cell line harbored invasive, colony-forming, and spheroid-forming potentials. Moreover, drug screening with chemotherapeutic agents and tyrosine kinase inhibitors revealed that doxorubicin, a subset of tyrosine kinase inhibitors, and several molecular targeting drugs markedly decreased NCC–SS1–C1 cell viability. Results from the present study support that the NCC–SS1–C1 cell line will be an effective tool for sarcoma research. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Human Cell Springer Journals

Establishment and characterization of the NCC–SS1–C1 synovial sarcoma cell line

Loading next page...
 
/lp/springer_journal/establishment-and-characterization-of-the-ncc-ss1-c1-synovial-sarcoma-1y03gAV2T7
Publisher
Springer Journals
Copyright
Copyright © 2018 by Japan Human Cell Society and Springer Japan KK, part of Springer Nature
Subject
Life Sciences; Cell Biology; Embryology; Oncology; Stem Cells; Reproductive Medicine; Cell Culture
eISSN
1749-0774
D.O.I.
10.1007/s13577-018-0199-9
Publisher site
See Article on Publisher Site

Abstract

Synovial sarcoma is an aggressive mesenchymal malignancy characterized by unique gene fusions. Tissue culture cells are essential tools for further understanding tumorigenesis and anti-cancer drug development; however, only a limited number of well-characterized synovial sarcoma cell lines exist. Thus, the objective of this study was to establish a patient-derived synovial sarcoma cell line. We established a synovial sarcoma cell line from tumor tissue isolated from a 72-year-old female patient. Prepared cells were analyzed for the presence of gene fusions by fluorescence in situ hybridization, RT-PCR, and karyotyping. In addition, the resulting cell line was characterized by viability, short tandem repeat, colony and spheroid formation, and invasion analyses. Differences in gene enrichment between the primary tumor and cell line were examined by mass spectrometric protein expression profiling and KEGG pathway analysis. Our analyses revealed that the primary tumor and NCC–SS1–C1 cell line harbored the SS18–SSX1 fusion gene typical of synovial sarcoma and similar proteomics profiles. In vitro analyses also confirmed that the established cell line harbored invasive, colony-forming, and spheroid-forming potentials. Moreover, drug screening with chemotherapeutic agents and tyrosine kinase inhibitors revealed that doxorubicin, a subset of tyrosine kinase inhibitors, and several molecular targeting drugs markedly decreased NCC–SS1–C1 cell viability. Results from the present study support that the NCC–SS1–C1 cell line will be an effective tool for sarcoma research.

Journal

Human CellSpringer Journals

Published: Feb 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off