Error exponents for multi-keyhole MIMO channels

Error exponents for multi-keyhole MIMO channels Along with the channel capacity, the error exponent is one of the most important information-theoretic measures of reliability, because it sets ultimate bounds on the performance of communication systems employing codes of finite complexity. In this paper, we derive closed-form expressions for the Gallager random coding and expurgated error exponents for multi-keyhole multiple-input multiple-output (MIMO) channels, which provide insights into a fundamental tradeoff between the communication reliability and information rate. We investigate the effect of keyholes on the error exponents and cutoff rate. Moreover, without an extensive Monte-Carlo simulation we can easily compute the codeword length necessary to achieve a predefined error probability at a given rate, which quantifies the effects of the number of antennas, channel coherence time, and the number of keyholes. In addition, we derive exact closed-form expressions for the ergodic capacity and cutoff rate based on the easily computable Meijer G-function. Finally, we extend our study to Rayleigh-product MIMO channels and keyhole MIMO channels. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Problems of Information Transmission Springer Journals

Error exponents for multi-keyhole MIMO channels

Loading next page...
 
/lp/springer_journal/error-exponents-for-multi-keyhole-mimo-channels-ew6MncN6nS
Publisher
Pleiades Publishing
Copyright
Copyright © 2015 by Pleiades Publishing, Inc.
Subject
Engineering; Communications Engineering, Networks; Electrical Engineering; Information Storage and Retrieval; Systems Theory, Control
ISSN
0032-9460
eISSN
1608-3253
D.O.I.
10.1134/S0032946015010019
Publisher site
See Article on Publisher Site

Abstract

Along with the channel capacity, the error exponent is one of the most important information-theoretic measures of reliability, because it sets ultimate bounds on the performance of communication systems employing codes of finite complexity. In this paper, we derive closed-form expressions for the Gallager random coding and expurgated error exponents for multi-keyhole multiple-input multiple-output (MIMO) channels, which provide insights into a fundamental tradeoff between the communication reliability and information rate. We investigate the effect of keyholes on the error exponents and cutoff rate. Moreover, without an extensive Monte-Carlo simulation we can easily compute the codeword length necessary to achieve a predefined error probability at a given rate, which quantifies the effects of the number of antennas, channel coherence time, and the number of keyholes. In addition, we derive exact closed-form expressions for the ergodic capacity and cutoff rate based on the easily computable Meijer G-function. Finally, we extend our study to Rayleigh-product MIMO channels and keyhole MIMO channels.

Journal

Problems of Information TransmissionSpringer Journals

Published: Apr 16, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off