Error bounds for parametric polynomial systems with applications to higher-order stability analysis and convergence rates

Error bounds for parametric polynomial systems with applications to higher-order stability... The paper addresses parametric inequality systems described by polynomial functions in finite dimensions, where state-dependent infinite parameter sets are given by finitely many polynomial inequalities and equalities. Such systems can be viewed, in particular, as solution sets to problems of generalized semi-infinite programming with polynomial data. Exploiting the imposed polynomial structure together with powerful tools of variational analysis and semialgebraic geometry, we establish a far-going extension of the Łojasiewicz gradient inequality to the general nonsmooth class of supremum marginal functions as well as higher-order (Hölder type) local error bounds results with explicitly calculated exponents. The obtained results are applied to higher-order quantitative stability analysis for various classes of optimization problems including generalized semi-infinite programming with polynomial data, optimization of real polynomials under polynomial matrix inequality constraints, and polynomial second-order cone programming. Other applications provide explicit convergence rate estimates for the cyclic projection algorithm to find common points of convex sets described by matrix polynomial inequalities and for the asymptotic convergence of trajectories of subgradient dynamical systems in semialgebraic settings. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mathematical Programming Springer Journals

Error bounds for parametric polynomial systems with applications to higher-order stability analysis and convergence rates

Loading next page...
 
/lp/springer_journal/error-bounds-for-parametric-polynomial-systems-with-applications-to-YTtj6unpwa
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society
Subject
Mathematics; Calculus of Variations and Optimal Control; Optimization; Mathematics of Computing; Numerical Analysis; Combinatorics; Theoretical, Mathematical and Computational Physics; Mathematical Methods in Physics
ISSN
0025-5610
eISSN
1436-4646
D.O.I.
10.1007/s10107-016-1014-6
Publisher site
See Article on Publisher Site

Abstract

The paper addresses parametric inequality systems described by polynomial functions in finite dimensions, where state-dependent infinite parameter sets are given by finitely many polynomial inequalities and equalities. Such systems can be viewed, in particular, as solution sets to problems of generalized semi-infinite programming with polynomial data. Exploiting the imposed polynomial structure together with powerful tools of variational analysis and semialgebraic geometry, we establish a far-going extension of the Łojasiewicz gradient inequality to the general nonsmooth class of supremum marginal functions as well as higher-order (Hölder type) local error bounds results with explicitly calculated exponents. The obtained results are applied to higher-order quantitative stability analysis for various classes of optimization problems including generalized semi-infinite programming with polynomial data, optimization of real polynomials under polynomial matrix inequality constraints, and polynomial second-order cone programming. Other applications provide explicit convergence rate estimates for the cyclic projection algorithm to find common points of convex sets described by matrix polynomial inequalities and for the asymptotic convergence of trajectories of subgradient dynamical systems in semialgebraic settings.

Journal

Mathematical ProgrammingSpringer Journals

Published: Apr 23, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off