Erlangian approximation to finite time probability of blocking time of multi-class OBS nodes

Erlangian approximation to finite time probability of blocking time of multi-class OBS nodes In an optical burst switching (OBS) network, the blocking time, representing the time interval during which the channel is occupied for a given class of incoming burst, is a key metric for performance evaluation and traffic shaping. In this paper, we study a horizon-based single-channel multi-class OBS node, for which the multiple traffic classes are differentiated using different offset time of each class. By assuming Poisson burst arrivals and phase-type distributed burst lengths and using the theory of Multi-layer stochastic fluid model, we obtain the Erlangian approximation for the finite time probability of the blocking time for a given class of burst in an OBS node. We further propose an explicit algorithm and procedure to calculate the Erlangian approximation. Numerical results are provided to illustrate the accuracy and the speed of convergence of the proposed method. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Erlangian approximation to finite time probability of blocking time of multi-class OBS nodes

Loading next page...
 
/lp/springer_journal/erlangian-approximation-to-finite-time-probability-of-blocking-time-of-gb8hXkfi0T
Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-015-0508-0
Publisher site
See Article on Publisher Site

Abstract

In an optical burst switching (OBS) network, the blocking time, representing the time interval during which the channel is occupied for a given class of incoming burst, is a key metric for performance evaluation and traffic shaping. In this paper, we study a horizon-based single-channel multi-class OBS node, for which the multiple traffic classes are differentiated using different offset time of each class. By assuming Poisson burst arrivals and phase-type distributed burst lengths and using the theory of Multi-layer stochastic fluid model, we obtain the Erlangian approximation for the finite time probability of the blocking time for a given class of burst in an OBS node. We further propose an explicit algorithm and procedure to calculate the Erlangian approximation. Numerical results are provided to illustrate the accuracy and the speed of convergence of the proposed method.

Journal

Photonic Network CommunicationsSpringer Journals

Published: May 13, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off