Erasure correction by low-density codes

Erasure correction by low-density codes We generalize the method for computing the number of errors correctable by a low-density parity-check (LDPC) code in a binary symmetric channel, which was proposed by V.V. Zyablov and M.S. Pinsker in 1975. This method is for the first time applied for computing the fraction of guaranteed correctable erasures for an LDPC code with a given constituent code used in an erasure channel. Unlike previously known combinatorial methods for computing the fraction of correctable erasures, this method is based on the theory of generating functions, which allows us to obtain more precise results and unify the computation method for various constituent codes of a regular LDPC code. We also show that there exist an LDPC code with a given constituent code which, when decoded with a low-complexity iterative algorithm, is capable of correcting any erasure pattern with a number of erasures that grows linearly with the code length. The number of decoding iterations, required to correct the erasures, is a logarithmic function of the code length. We make comparative analysis of various numerical results obtained by various computation methods for certain parameters of an LDPC code with a constituent single-parity-check or Hamming code. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Problems of Information Transmission Springer Journals

Erasure correction by low-density codes

Loading next page...
 
/lp/springer_journal/erasure-correction-by-low-density-codes-wuMBcPpetv
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2009 by Pleiades Publishing, Ltd.
Subject
Engineering; Systems Theory, Control; Information Storage and Retrieval; Electrical Engineering; Communications Engineering, Networks
ISSN
0032-9460
eISSN
1608-3253
D.O.I.
10.1134/S0032946009030028
Publisher site
See Article on Publisher Site

Abstract

We generalize the method for computing the number of errors correctable by a low-density parity-check (LDPC) code in a binary symmetric channel, which was proposed by V.V. Zyablov and M.S. Pinsker in 1975. This method is for the first time applied for computing the fraction of guaranteed correctable erasures for an LDPC code with a given constituent code used in an erasure channel. Unlike previously known combinatorial methods for computing the fraction of correctable erasures, this method is based on the theory of generating functions, which allows us to obtain more precise results and unify the computation method for various constituent codes of a regular LDPC code. We also show that there exist an LDPC code with a given constituent code which, when decoded with a low-complexity iterative algorithm, is capable of correcting any erasure pattern with a number of erasures that grows linearly with the code length. The number of decoding iterations, required to correct the erasures, is a logarithmic function of the code length. We make comparative analysis of various numerical results obtained by various computation methods for certain parameters of an LDPC code with a constituent single-parity-check or Hamming code.

Journal

Problems of Information TransmissionSpringer Journals

Published: Oct 23, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off