# Erasure correction by low-density codes

Erasure correction by low-density codes We generalize the method for computing the number of errors correctable by a low-density parity-check (LDPC) code in a binary symmetric channel, which was proposed by V.V. Zyablov and M.S. Pinsker in 1975. This method is for the first time applied for computing the fraction of guaranteed correctable erasures for an LDPC code with a given constituent code used in an erasure channel. Unlike previously known combinatorial methods for computing the fraction of correctable erasures, this method is based on the theory of generating functions, which allows us to obtain more precise results and unify the computation method for various constituent codes of a regular LDPC code. We also show that there exist an LDPC code with a given constituent code which, when decoded with a low-complexity iterative algorithm, is capable of correcting any erasure pattern with a number of erasures that grows linearly with the code length. The number of decoding iterations, required to correct the erasures, is a logarithmic function of the code length. We make comparative analysis of various numerical results obtained by various computation methods for certain parameters of an LDPC code with a constituent single-parity-check or Hamming code. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Problems of Information Transmission Springer Journals

# Erasure correction by low-density codes

, Volume 45 (3) – Oct 23, 2009
17 pages

/lp/springer_journal/erasure-correction-by-low-density-codes-wuMBcPpetv
Publisher
Springer Journals
Subject
Engineering; Systems Theory, Control; Information Storage and Retrieval; Electrical Engineering; Communications Engineering, Networks
ISSN
0032-9460
eISSN
1608-3253
D.O.I.
10.1134/S0032946009030028
Publisher site
See Article on Publisher Site

### Abstract

We generalize the method for computing the number of errors correctable by a low-density parity-check (LDPC) code in a binary symmetric channel, which was proposed by V.V. Zyablov and M.S. Pinsker in 1975. This method is for the first time applied for computing the fraction of guaranteed correctable erasures for an LDPC code with a given constituent code used in an erasure channel. Unlike previously known combinatorial methods for computing the fraction of correctable erasures, this method is based on the theory of generating functions, which allows us to obtain more precise results and unify the computation method for various constituent codes of a regular LDPC code. We also show that there exist an LDPC code with a given constituent code which, when decoded with a low-complexity iterative algorithm, is capable of correcting any erasure pattern with a number of erasures that grows linearly with the code length. The number of decoding iterations, required to correct the erasures, is a logarithmic function of the code length. We make comparative analysis of various numerical results obtained by various computation methods for certain parameters of an LDPC code with a constituent single-parity-check or Hamming code.

### Journal

Problems of Information TransmissionSpringer Journals

Published: Oct 23, 2009

## You’re reading a free preview. Subscribe to read the entire article.

### DeepDyve is your personal research library

It’s your single place to instantly
that matters to you.

over 18 million articles from more than
15,000 peer-reviewed journals.

All for just \$49/month

### Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

### Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

### Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

### Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

DeepDyve

DeepDyve

### Pro

Price

FREE

\$49/month
\$360/year

Save searches from
PubMed

Create lists to

Export lists, citations