EQUIVARIANT CHOW CLASSES OF MATRIX ORBIT CLOSURES

EQUIVARIANT CHOW CLASSES OF MATRIX ORBIT CLOSURES Let G be the product GL r (C) × (C ×)n. We show that the G-equivariant Chow class of a G orbit closure in the space of r-by-n matrices is determined by a matroid. To do this, we split the natural surjective map from the G equvariant Chow ring of the space of matrices to the torus equivariant Chow ring of the Grassmannian. The splitting takes the class of a Schubert variety to the corresponding factorial Schur polynomial, and also has the property that the class of a subvariety of the Grassmannian is mapped to the class of the closure of those matrices whose row span is in the variety. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Transformation Groups Springer Journals

EQUIVARIANT CHOW CLASSES OF MATRIX ORBIT CLOSURES

Loading next page...
 
/lp/springer_journal/equivariant-chow-classes-of-matrix-orbit-closures-eVhKbJcXj2
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Mathematics; Topological Groups, Lie Groups; Algebra
ISSN
1083-4362
eISSN
1531-586X
D.O.I.
10.1007/s00031-016-9406-5
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial