Equilibrium States for Expanding Thurston Maps

Equilibrium States for Expanding Thurston Maps In this paper, we use the thermodynamical formalism to show that there exists a unique equilibrium state $${\mu_\phi}$$ μ ϕ for each expanding Thurston map $${f : S^2\rightarrow S^2}$$ f : S 2 → S 2 together with a real-valued Hölder continuous potential $${\phi}$$ ϕ . Here the sphere S 2 is equipped with a natural metric induced by f, called a visual metric. We also prove that identical equilibrium states correspond to potentials that are co-homologous up to a constant, and that the measure-preserving transformation f of the probability space $${(S^2,\mu_\phi)}$$ ( S 2 , μ ϕ ) is exact, and in particular, mixing and ergodic. Moreover, we establish versions of equidistribution of preimages under iterates of f, and a version of equidistribution of a random backward orbit, with respect to the equilibrium state. As a consequence, we recover various results in the literature for a postcritically-finite rational map with no periodic critical points on the Riemann sphere equipped with the chordal metric. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Communications in Mathematical Physics Springer Journals

Equilibrium States for Expanding Thurston Maps

Loading next page...
 
/lp/springer_journal/equilibrium-states-for-expanding-thurston-maps-fCGuGrTtr2
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Physics; Theoretical, Mathematical and Computational Physics; Mathematical Physics; Quantum Physics; Complex Systems; Classical and Quantum Gravitation, Relativity Theory
ISSN
0010-3616
eISSN
1432-0916
D.O.I.
10.1007/s00220-017-3073-9
Publisher site
See Article on Publisher Site

Abstract

In this paper, we use the thermodynamical formalism to show that there exists a unique equilibrium state $${\mu_\phi}$$ μ ϕ for each expanding Thurston map $${f : S^2\rightarrow S^2}$$ f : S 2 → S 2 together with a real-valued Hölder continuous potential $${\phi}$$ ϕ . Here the sphere S 2 is equipped with a natural metric induced by f, called a visual metric. We also prove that identical equilibrium states correspond to potentials that are co-homologous up to a constant, and that the measure-preserving transformation f of the probability space $${(S^2,\mu_\phi)}$$ ( S 2 , μ ϕ ) is exact, and in particular, mixing and ergodic. Moreover, we establish versions of equidistribution of preimages under iterates of f, and a version of equidistribution of a random backward orbit, with respect to the equilibrium state. As a consequence, we recover various results in the literature for a postcritically-finite rational map with no periodic critical points on the Riemann sphere equipped with the chordal metric.

Journal

Communications in Mathematical PhysicsSpringer Journals

Published: Jan 31, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off