EPR study of Fremy’s salt nitroxide roduction by ascorbic acid; influence of the bulk pH values

EPR study of Fremy’s salt nitroxide roduction by ascorbic acid; influence of the bulk pH values EPR and UV spectroscopy were used to investigate the efficiency of ascorbic acid in reducing Fremy’s salt. Our data indicates that the first proton electron transfer from ascorbate occurs within the mixing time. Even after the disappearance of the UV signal of the ascorbate, EPR measurements showed that the reaction goes forward, indicating a biphasic redox process. The slower time-course of this second phase was related to the initial concentrations of the reductant. Experiments performed at four different pH values demonstrated that the reduction was a function of the bulk solution pH. At the lower pH, after a fast initial reduction, the Fremy’s salt EPR signal remained constant, while at physiological or higher pH a further reduction was found. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

EPR study of Fremy’s salt nitroxide roduction by ascorbic acid; influence of the bulk pH values

Loading next page...
 
/lp/springer_journal/epr-study-of-fremy-s-salt-nitroxide-roduction-by-ascorbic-acid-5K0bC1Jbuu
Publisher
Brill Academic Publishers
Copyright
Copyright © 2000 by VSP
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856700X00372
Publisher site
See Article on Publisher Site

Abstract

EPR and UV spectroscopy were used to investigate the efficiency of ascorbic acid in reducing Fremy’s salt. Our data indicates that the first proton electron transfer from ascorbate occurs within the mixing time. Even after the disappearance of the UV signal of the ascorbate, EPR measurements showed that the reaction goes forward, indicating a biphasic redox process. The slower time-course of this second phase was related to the initial concentrations of the reductant. Experiments performed at four different pH values demonstrated that the reduction was a function of the bulk solution pH. At the lower pH, after a fast initial reduction, the Fremy’s salt EPR signal remained constant, while at physiological or higher pH a further reduction was found.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jan 1, 2000

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off