EPR analysis of the interacting properties and the degradation over time and irradiation of mastic resin used for painting protection

EPR analysis of the interacting properties and the degradation over time and irradiation of... Mastic resin used as a covering film for painting protection was analyzed by electron paramagnetic resonance (EPR) spectroscopy, both as received and upon aging in sun-light. The effect of prolonged exposure to sun-light was mimicked by UV and, more so, by xenon lamp irradiation. Solid mastic presented EPR signals due to radicals trapped by PBN in solution. Data in the literature indicated the formation of acyl radicals (RCO·). These radicals preferentially dissolved in medium polarity solvents. The radical concentration in the solid mastic increased over time more than 50 times upon UV irradiation for 96 h and, even more, by xenon irradiation for 800 h. Also the PBN-trapped radicals in solution increased in concentration by irradiation. Small nitroxide radicals (TEMPO) interacted with a polar fraction of mastic dissolved in methanol, but mainly interacted with low polar mastic molecules in hydrophobic solvents. It was suggested, on the basis of both the PBN-spin trapping data and the TEMPO mobility variation in the solvents at different polarities, that terpenoid molecules partially polymerize by a radical mechanism to form low molecular weight products. A polyaromatic-radical (pyrene-TEMPO) and a biomolecule-radical (doxylcholestane) both interact weakly with mastic molecules in cyclohexane solutions. A positively charged surfactant radical (dimethylammonium-TEMPO bromide) was easily adsorbed onto the solid mastic surface suggesting that detergents are responsible for mastic degradation. In conclusion, this study provided information on the degradation mechanism of mastic resin and on its interacting ability towards external molecules and pollutants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

EPR analysis of the interacting properties and the degradation over time and irradiation of mastic resin used for painting protection

Loading next page...
 
/lp/springer_journal/epr-analysis-of-the-interacting-properties-and-the-degradation-over-qplgSAXoGY
Publisher
Brill Academic Publishers
Copyright
Copyright © 2002 by VSP 2002
Subject
Chemistry; Inorganic Chemistry; Physical Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856702320267055
Publisher site
See Article on Publisher Site

Abstract

Mastic resin used as a covering film for painting protection was analyzed by electron paramagnetic resonance (EPR) spectroscopy, both as received and upon aging in sun-light. The effect of prolonged exposure to sun-light was mimicked by UV and, more so, by xenon lamp irradiation. Solid mastic presented EPR signals due to radicals trapped by PBN in solution. Data in the literature indicated the formation of acyl radicals (RCO·). These radicals preferentially dissolved in medium polarity solvents. The radical concentration in the solid mastic increased over time more than 50 times upon UV irradiation for 96 h and, even more, by xenon irradiation for 800 h. Also the PBN-trapped radicals in solution increased in concentration by irradiation. Small nitroxide radicals (TEMPO) interacted with a polar fraction of mastic dissolved in methanol, but mainly interacted with low polar mastic molecules in hydrophobic solvents. It was suggested, on the basis of both the PBN-spin trapping data and the TEMPO mobility variation in the solvents at different polarities, that terpenoid molecules partially polymerize by a radical mechanism to form low molecular weight products. A polyaromatic-radical (pyrene-TEMPO) and a biomolecule-radical (doxylcholestane) both interact weakly with mastic molecules in cyclohexane solutions. A positively charged surfactant radical (dimethylammonium-TEMPO bromide) was easily adsorbed onto the solid mastic surface suggesting that detergents are responsible for mastic degradation. In conclusion, this study provided information on the degradation mechanism of mastic resin and on its interacting ability towards external molecules and pollutants.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off