Epoxidation of 1-butene to 1,2-butene oxide by transition metal disubstituted P–W–Mo ternary heteropoly quaternary ammonium salts

Epoxidation of 1-butene to 1,2-butene oxide by transition metal disubstituted P–W–Mo ternary... A series of transitional metal disubstituted ternary heteropoly quaternary ammonium salts, [TPA]4H3[PW7Mo3M2O38(H2O)2] (M = Mn, Co, Ni, Cu), were prepared by the reaction of the anion PW6Mo3O34 9− and the corresponding salts of the transitional metal in water, characterized by FI-IR, UV–Vis, XRD and TGA spectra, and appied to the epoxidation of 1-butene to 1,2-butene oxide (BO). The influences of temperature, reaction time, H2O2 concentration and catalyst concentration on the epoxidation of 1-butene were studied in the acetonitrile/hydrogen peroxide catalytic system. The variation ranges of these parameters ensuring a high H2O2 conversion and high selectivity of BO were established. It can be observed that the catalytic activity decreases in the order PWMoMn > PWMoCo > PWMoNi > PWMoCu. The best conversion of H2O2 and selectivity toward BO were achieved under optimized conditions: reaction time = 2 h, reaction temperature = 50 °C, H2O2 concentration = 0.5 mol/L and a catalyst concentration of 2.5 g/L. In particular, the catalyst PWMoMn is the most active one for epoxidation of 1-butene to BO (selectivity of BO up to 97.6 %). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Epoxidation of 1-butene to 1,2-butene oxide by transition metal disubstituted P–W–Mo ternary heteropoly quaternary ammonium salts

Loading next page...
 
/lp/springer_journal/epoxidation-of-1-butene-to-1-2-butene-oxide-by-transition-metal-f11QC1bsEn
Publisher
Springer Netherlands
Copyright
Copyright © 2015 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-015-1936-2
Publisher site
See Article on Publisher Site

Abstract

A series of transitional metal disubstituted ternary heteropoly quaternary ammonium salts, [TPA]4H3[PW7Mo3M2O38(H2O)2] (M = Mn, Co, Ni, Cu), were prepared by the reaction of the anion PW6Mo3O34 9− and the corresponding salts of the transitional metal in water, characterized by FI-IR, UV–Vis, XRD and TGA spectra, and appied to the epoxidation of 1-butene to 1,2-butene oxide (BO). The influences of temperature, reaction time, H2O2 concentration and catalyst concentration on the epoxidation of 1-butene were studied in the acetonitrile/hydrogen peroxide catalytic system. The variation ranges of these parameters ensuring a high H2O2 conversion and high selectivity of BO were established. It can be observed that the catalytic activity decreases in the order PWMoMn > PWMoCo > PWMoNi > PWMoCu. The best conversion of H2O2 and selectivity toward BO were achieved under optimized conditions: reaction time = 2 h, reaction temperature = 50 °C, H2O2 concentration = 0.5 mol/L and a catalyst concentration of 2.5 g/L. In particular, the catalyst PWMoMn is the most active one for epoxidation of 1-butene to BO (selectivity of BO up to 97.6 %).

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Feb 7, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off