Epilepsy But Not Mobile Phone Frequency (900MHz) Induces Apoptosis and Calcium Entry in Hippocampus of Epileptic Rat: Involvement of TRPV1 Channels

Epilepsy But Not Mobile Phone Frequency (900MHz) Induces Apoptosis and Calcium Entry in... Electromagnetic radiation (EMR) and epilepsy are reported to mediate the regulation of apoptosis and oxidative stress through Ca2+ influx. Results of recent reports indicated that EMR can increase temperature and oxidative stress of body cells, and TRPV1 channel is activated by noxious heat, oxidative stress, and capsaicin (CAP). We investigated the effects of mobile phone (900 MHz) EMR exposure on Ca2+ influx, apoptosis, oxidative stress, and TRPV1 channel activations in the hippocampus of pentylenetetrazol (PTZ)-induced epileptic rats. Freshly isolated hippocampal neurons of twenty-one rats were used in study within three groups namely control, PTZ, and PTZ + EMR. The neurons in the three groups were stimulated by CAP. Epilepsy was induced by PTZ administration. The neurons in PTZ + EMR group were exposed to the 900 MHz EMR for 1 h. The apoptosis, mitochondrial membrane depolarization, intracellular reactive oxygen species (ROS), and caspase-3 and caspase-9 values were higher in PTZ and PTZ + EMR groups than in control. However, EMR did not add additional increase effects on the values in the hippocampal neurons. Intracellular-free Ca2+ concentrations in fura-2 analyses were also higher in PTZ + CAP group than in control although their concentrations were decreased by TRPV1 channel blocker, capsazepine. However, there were no statistical changes on the Ca2+ concentrations between epilepsy and EMR groups. In conclusion, apoptosis, mitochondrial, ROS, and Ca2+ influx via TRPV1 channel were increased in the hippocampal neurons by epilepsy induction although the mobile phone did not change the values. The results indicated that TRPV1 channels in hippocampus may possibly be a novel target for effective target of epilepsy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Epilepsy But Not Mobile Phone Frequency (900MHz) Induces Apoptosis and Calcium Entry in Hippocampus of Epileptic Rat: Involvement of TRPV1 Channels

Loading next page...
 
/lp/springer_journal/epilepsy-but-not-mobile-phone-frequency-900mhz-induces-apoptosis-and-w8mi6pYuaO
Publisher
Springer US
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-014-9744-y
Publisher site
See Article on Publisher Site

Abstract

Electromagnetic radiation (EMR) and epilepsy are reported to mediate the regulation of apoptosis and oxidative stress through Ca2+ influx. Results of recent reports indicated that EMR can increase temperature and oxidative stress of body cells, and TRPV1 channel is activated by noxious heat, oxidative stress, and capsaicin (CAP). We investigated the effects of mobile phone (900 MHz) EMR exposure on Ca2+ influx, apoptosis, oxidative stress, and TRPV1 channel activations in the hippocampus of pentylenetetrazol (PTZ)-induced epileptic rats. Freshly isolated hippocampal neurons of twenty-one rats were used in study within three groups namely control, PTZ, and PTZ + EMR. The neurons in the three groups were stimulated by CAP. Epilepsy was induced by PTZ administration. The neurons in PTZ + EMR group were exposed to the 900 MHz EMR for 1 h. The apoptosis, mitochondrial membrane depolarization, intracellular reactive oxygen species (ROS), and caspase-3 and caspase-9 values were higher in PTZ and PTZ + EMR groups than in control. However, EMR did not add additional increase effects on the values in the hippocampal neurons. Intracellular-free Ca2+ concentrations in fura-2 analyses were also higher in PTZ + CAP group than in control although their concentrations were decreased by TRPV1 channel blocker, capsazepine. However, there were no statistical changes on the Ca2+ concentrations between epilepsy and EMR groups. In conclusion, apoptosis, mitochondrial, ROS, and Ca2+ influx via TRPV1 channel were increased in the hippocampal neurons by epilepsy induction although the mobile phone did not change the values. The results indicated that TRPV1 channels in hippocampus may possibly be a novel target for effective target of epilepsy.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Nov 9, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off