Epigenetic aspects of somaclonal variation in plants

Epigenetic aspects of somaclonal variation in plants Somaclonal variation is manifested as cytological abnormalities, frequent qualitative and quantitative phenotypic mutation, sequence change, and gene activation and silencing. Activation of quiescent transposable elements and retrotransposons indicate that epigenetic changes occur through the culture process. Epigenetic activation of DNA elements further suggests that epigenetic changes may also be involved in cytogenetic instability through modification of heterochromatin, and as a basis of phenotypic variation through the modulation of gene function. The observation that DNA methylation patterns are highly variable among regenerated plants and their progeny provides evidence that DNA modifications are less stable in culture than in seed-grown plants. Future research will determine the relative importance of epigenetic versus sequence or chromosome variation in conditioning somaclonal variation in plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Epigenetic aspects of somaclonal variation in plants

Loading next page...
 
/lp/springer_journal/epigenetic-aspects-of-somaclonal-variation-in-plants-X3hZasNVep
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2000 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006423110134
Publisher site
See Article on Publisher Site

Abstract

Somaclonal variation is manifested as cytological abnormalities, frequent qualitative and quantitative phenotypic mutation, sequence change, and gene activation and silencing. Activation of quiescent transposable elements and retrotransposons indicate that epigenetic changes occur through the culture process. Epigenetic activation of DNA elements further suggests that epigenetic changes may also be involved in cytogenetic instability through modification of heterochromatin, and as a basis of phenotypic variation through the modulation of gene function. The observation that DNA methylation patterns are highly variable among regenerated plants and their progeny provides evidence that DNA modifications are less stable in culture than in seed-grown plants. Future research will determine the relative importance of epigenetic versus sequence or chromosome variation in conditioning somaclonal variation in plants.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 16, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off